
Index: cnnnnunieallon satellites, in-orhit testing,
software , systems monitoring, transponders

Microwave measurement system
software

K. D. FULl.Fn, W. D. KELLEY, V. E. RICINOS, P-H. SHEN,
AND S. L. TELLER

(Ylunmsdpt received Dccemher 9, 1992)

Abstract

To facilitate efficient, cost-effective development of in-orbit lest (LOT) measure-
ments and turnkey systems, microwave measurement system (MMS) software built on
an engineered platform of reusable software services and facilities has been developed
over the past several years and deployed in operational systems. The Measurement
Processing and Control Platform (MPCP) provides modular software components that
have been developed and tested for measurement scheduling, interprocess communica-
tions, and resource and system information sharing. Its code libraries support graphically
based user interfaces, instrument control, instrument bus management, and error detection
and reporting; and its data processing subsystems support database management, report
generation, and interactive data analysis.

Operating in a network environment under a UNIX System V operating system,
this multiuser, multitasking MMS software supports both local and wide-area network-
ing, including remote access and control of the IOT measurement equipment. It ex-
ecutes in a distributed processing system architecture spanning a number of dissimilar
workstations. With interprocess/intermachine communications provided by the MPCP
mail system, the separate user interface and measurement programs can execute on
different machines at different times, for improved operational flexibility.

This paper describes the design and implementation of the MMS software. The
concepts and methods presented are also applicable to other measurement-oriented
systems (such as those used for communications system monitoring), where escalating
software costs must be controlled.

101

102 COMSAI I ECHNICAL REVIEW VOLUME, 23 NUMBER I, SPRING 1993

Introduction

Computer-controlled in-orbit test (IOT) systems integrate microwave
measurement equipment, computer hardware, and measurement software into
a unified test facility for measuring the communications subsystem perfor-
mance of an orbiting satellite. To assess performance, the IOT system conducts
a variety of microwave frequency measurements. These include the measure-
ment of spacecraft input power flux density ([PFD) and equivalent isotropically
radiated power (FURP); transponder frequency response; gain transfer; group
delay: gain-to-noise temperature ratio, G/C; and others [1],[2].

The development of modern JOT systems is traced by Shen el at. [31. As
noted in that paper. IOT is performed for acceptance testing immediately
following launch; to monitor communications subsystem performance through-
out the satellite's operational lifetime; and to investigate anomalies. The specific
missions determine the IOT system's basic requirements. The fact that newer
satellites contain more transponders and have increased payload complexity
compared to earlier generations places greater demands and constraints on the
IOT systems built to test them. Because the satellite owner desires to place the
satellite into revenue-generating operational service as soon as possible after
launch, the IoT system is constrained to accomplish its task as quickly as
possible, especially during acceptance testing. Increased satellite capacity and
complexity have also resulted in greater volumes of test data, which must be
maintained and reported. Finally, the pool of spacecraft experts available for
performing complex IOTs and evaluating the data is distributed more thinly as
the number of satellite networks in service increases.

In addition to its primary mission of performing loT measurements, the
modern computer-controlled IOT system must address such system requirements
as real-time and network operation, human-machine interaction, and remote
access and control of the measurement hardware. The system must provide a
user interface that is easy to use, yet flexible enough to accommodate the
various IOT missions. The capability to execute measurements concurrently
and to support a multiuser environment are desirable system features.

These requirements and constraints place greater responsibility for loT
system functionality on the software, which must address the network, hardware,
and communications environment of a distributed processing system spanning
a number of workstations. As a result, the TOT software, with its volume,
sophistication, complexity, and difficulty of development and control, has
come to dominate both overall system cost and scheduling. The development
of custom software is time-consuming and costly, and requires highly skilled
personnel. Methods and techniques are continually being sought to make the

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 103

tOT software production process more efficient. By contrast, the cost and
scheduling aspects of hardware implementation for IOT and similar measurement
systems are generally well-understood and well-controlled.

This paper discusses the principal software concepts underlying
development of the Measurement Processing and Control Platform (MPCP),
which served as the foundation for design and implementation of the microwave
measurement system (MMS) software. Specific applications for computer-
controlled TOT measurements and turnkey systems are addressed. A companion
paper 141 describes the implementation of the MPCP software in a specific lOT
system.

The principles underlying a robust, software-engineered platform such as
MPCP are also applicable to the software implementation of similar
measurement-oriented, computer-controlled systems, such as communications
monitoring systems. Like computer-controlled TOT systems, these systems
require escalating amounts of software for which costs, scheduling, and quality
must be controlled.

Software development methodology

IOT systems are uniquely designed to test specific satellite characteristics
and networks; however, many IOT measurement subtasks are the same from
one IOT system to the next. Such commonality of function underlies much of
the MMS design.

Because 1oT systems are unique and custom-built, the software
implementation of computer-controlled IOT systems is not standardized, nor is
there a standard 1oT software architecture. Riginos et at. [51 contrasts two
approaches to designing such software. In one approach, measurements are
implemented one at a time in a self-contained manner. Each measurement
performs all required functions, including instrument control, user interface,
and data processing tasks such as database management, printing, and plotting.
As new measurements are required, an existing measurement is copied and
modified to meet the specific requirements. While this self-contained approach
has certain attributes, such as moderate levels of developmental effort for
succeeding measurements, its use for large-scale systems software development
also contributes to problems in terms of life cycle maintenance, quality,
capability, flexibility, and extensibility.

Early implementations of computer-controlled 1OT systems employed the
self-contained measurement methodology. After several such systems had
been implemented, it was realized that 80 to 90 percent of the measurement
tasks-such as managing the user interface, controlling and managing the

102 COMSAI I ECHNICAL REVIEW VOLUME, 23 NUMBER I, SPRING 1993

Introduction

Computer-controlled in-orbit test (IOT) systems integrate microwave
measurement equipment, computer hardware, and measurement software into
a unified test facility for measuring the communications subsystem perfor-
mance of an orbiting satellite. To assess performance, the IOT system conducts
a variety of microwave frequency measurements. These include the measure-
ment of spacecraft input power flux density ([PFD) and equivalent isotropically
radiated power (FURP); transponder frequency response; gain transfer; group
delay: gain-to-noise temperature ratio, G/C; and others [1],[2].

The development of modern JOT systems is traced by Shen el at. [31. As
noted in that paper. IOT is performed for acceptance testing immediately
following launch; to monitor communications subsystem performance through-
out the satellite's operational lifetime; and to investigate anomalies. The specific
missions determine the IOT system's basic requirements. The fact that newer
satellites contain more transponders and have increased payload complexity
compared to earlier generations places greater demands and constraints on the
IOT systems built to test them. Because the satellite owner desires to place the
satellite into revenue-generating operational service as soon as possible after
launch, the IoT system is constrained to accomplish its task as quickly as
possible, especially during acceptance testing. Increased satellite capacity and
complexity have also resulted in greater volumes of test data, which must be
maintained and reported. Finally, the pool of spacecraft experts available for
performing complex IOTs and evaluating the data is distributed more thinly as
the number of satellite networks in service increases.

In addition to its primary mission of performing loT measurements, the
modern computer-controlled IOT system must address such system requirements
as real-time and network operation, human-machine interaction, and remote
access and control of the measurement hardware. The system must provide a
user interface that is easy to use, yet flexible enough to accommodate the
various IOT missions. The capability to execute measurements concurrently
and to support a multiuser environment are desirable system features.

These requirements and constraints place greater responsibility for loT
system functionality on the software, which must address the network, hardware,
and communications environment of a distributed processing system spanning
a number of workstations. As a result, the TOT software, with its volume,
sophistication, complexity, and difficulty of development and control, has
come to dominate both overall system cost and scheduling. The development
of custom software is time-consuming and costly, and requires highly skilled
personnel. Methods and techniques are continually being sought to make the

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 103

tOT software production process more efficient. By contrast, the cost and
scheduling aspects of hardware implementation for IOT and similar measurement
systems are generally well-understood and well-controlled.

This paper discusses the principal software concepts underlying
development of the Measurement Processing and Control Platform (MPCP),
which served as the foundation for design and implementation of the microwave
measurement system (MMS) software. Specific applications for computer-
controlled TOT measurements and turnkey systems are addressed. A companion
paper 141 describes the implementation of the MPCP software in a specific lOT
system.

The principles underlying a robust, software-engineered platform such as
MPCP are also applicable to the software implementation of similar
measurement-oriented, computer-controlled systems, such as communications
monitoring systems. Like computer-controlled TOT systems, these systems
require escalating amounts of software for which costs, scheduling, and quality
must be controlled.

Software development methodology

IOT systems are uniquely designed to test specific satellite characteristics
and networks; however, many IOT measurement subtasks are the same from
one IOT system to the next. Such commonality of function underlies much of
the MMS design.

Because 1oT systems are unique and custom-built, the software
implementation of computer-controlled IOT systems is not standardized, nor is
there a standard 1oT software architecture. Riginos et at. [51 contrasts two
approaches to designing such software. In one approach, measurements are
implemented one at a time in a self-contained manner. Each measurement
performs all required functions, including instrument control, user interface,
and data processing tasks such as database management, printing, and plotting.
As new measurements are required, an existing measurement is copied and
modified to meet the specific requirements. While this self-contained approach
has certain attributes, such as moderate levels of developmental effort for
succeeding measurements, its use for large-scale systems software development
also contributes to problems in terms of life cycle maintenance, quality,
capability, flexibility, and extensibility.

Early implementations of computer-controlled 1OT systems employed the
self-contained measurement methodology. After several such systems had
been implemented, it was realized that 80 to 90 percent of the measurement
tasks-such as managing the user interface, controlling and managing the

104 COMSAT IECI INICAL REVIEW VOLUME 2 3 NUMBER I . SPRING 1993

instruments, managing data and files, reporting and logging errors, plotting
and printing output data-were common to all IOT measurements. This
realization formed the basis for a fundamentally different strategy of building
IOT systems and measurements.

This alternative approach, based on a software-engineered platform of
reusable software components, was the one selected for developing the MPCP
and MMS described here. Although the initial design and development effort is
substantial, the engineered platform implementation results in improved
software characteristics in terms of life cycle (reusability, maintainability,
expandability, portability, and evolution), quality (methodology, robustness,
consistency, and flexibility), and capability (remote control, networking, con-
current measurements, distributed systems, and user-driven changes).

Well-conceived and well-implemented reusable software components can
significantly decrease the scheduling and performance risks associated with
large-scale software development. With MPCP components as a base, new or
systems and measurements can be implemented in a cost-effective and timely
manner.

The firer operating system

The MPCP is a special-purpose operating system that provides an integrated
platform of facilities, subsystems, and services to the measurement application
program. These include interprocess/intermachine mail communications,
measurement scheduling and resource management, a system-wide shared-
data depository called the datapool. standardized file management, database
management, alarm management, and printing and plotting. Object code
libraries are provided for instrument control, IEEE-488 bus control, uniform
error handling, user interface support facilities, and other utility functions that
can be linked with applications such as IOT measurements.

The MPCP operating system is implemented via the UNIX System V operating
system. enhanced with Berkeley sockets for communication and IEEE-488 bus
control functions for measurement equipment interfacing. Because MPCP is
implemented in the C and C++ languages, it executes with high run-time
efficiency and is highly portable to other machines.

The basic concept is to design and implement task-specific modules that
can be independently tested, refined, and expanded. Although the modules are
functionally specialized, a major design goal is generality within the problem
domain of the specific function. Over a period of several years, MPCP was
developed as a platform of IOT system and measurement code building blocks
that could be reused between measurements and across systems. The use of
pre-tested modules substantially reduces the development time, cost, and per-

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 105

formance risk of unproven software. Because of the functional similarity of
JOT systems and measurements, the code reuse percentage for MPCP is quite
high.

MPCP design goals

MPCP implementation follows generally accepted software engineering
principles, practices, and open system standards. These are briefly described
below, with emphasis on why certain design choices were made, rather than
on how the software is specifically implemented.

Because customers require remote access and control of an IOT system, an
important design goal was to support a networked, distributed-processing
hardware environment. The Mpcp executes in such an environment. A typical
lOT system architecture is shown in Figure 1.

Another principal design goal was to separate functional tasks into dedicated
processes that could execute in distributed-processing, networked environments.
A "process" is a program that is being executed in the host machine. Each
process performs a specialized task with well-defined external interfaces. For
example. an IOT measurement inputs parameters from the user, manages the
hardware during data acquisition, saves the data in a database, and prints or
plots the measured data. The overall measurement is implemented as two
separate processes: one that interfaces with the user, and another that manages
the measurement equipment and performs the actual measurement. The 101
system's scheduler, datapool. and earth station management facilities are
implemented as self-contained dedicated "daemon" processes (i.e., processes
executing continuously in the background of the UNIX operating system). The
printing and plotting tasks are similarly managed. Problems are generally
contained within a specific process, and task-specific programs can be modi-
fied and recompiled when necessary, with little or no impact on the interfaces.

With separately executing processes. interprocess communication is required.
This capability is provided by the MPCP mail subsystem, which client processes
can access via calls to a library of mail functions. The mechanisms used by the
mail subsystem are completely transparent to clients. To support a distributed
processing (multiple-host) execution environment, the mail subsystem facilitates
intermachine interprocess communications in which processes can execute on
different host workstations and computers connected via a transmission control
protocol/internet protocol (rCP/IP) network. Figure 2 depicts such an
arrangement, with each box representing a separate workstation or computer.

Following another software principle, the MPCP is structured in a top-
down hierarchy which permits the software to be partitioned according to
function, and distinguishes between high-level and low-level functions. An

104 COMSAT IECI INICAL REVIEW VOLUME 2 3 NUMBER I . SPRING 1993

instruments, managing data and files, reporting and logging errors, plotting
and printing output data-were common to all IOT measurements. This
realization formed the basis for a fundamentally different strategy of building
IOT systems and measurements.

This alternative approach, based on a software-engineered platform of
reusable software components, was the one selected for developing the MPCP
and MMS described here. Although the initial design and development effort is
substantial, the engineered platform implementation results in improved
software characteristics in terms of life cycle (reusability, maintainability,
expandability, portability, and evolution), quality (methodology, robustness,
consistency, and flexibility), and capability (remote control, networking, con-
current measurements, distributed systems, and user-driven changes).

Well-conceived and well-implemented reusable software components can
significantly decrease the scheduling and performance risks associated with
large-scale software development. With MPCP components as a base, new or
systems and measurements can be implemented in a cost-effective and timely
manner.

The firer operating system

The MPCP is a special-purpose operating system that provides an integrated
platform of facilities, subsystems, and services to the measurement application
program. These include interprocess/intermachine mail communications,
measurement scheduling and resource management, a system-wide shared-
data depository called the datapool. standardized file management, database
management, alarm management, and printing and plotting. Object code
libraries are provided for instrument control, IEEE-488 bus control, uniform
error handling, user interface support facilities, and other utility functions that
can be linked with applications such as IOT measurements.

The MPCP operating system is implemented via the UNIX System V operating
system. enhanced with Berkeley sockets for communication and IEEE-488 bus
control functions for measurement equipment interfacing. Because MPCP is
implemented in the C and C++ languages, it executes with high run-time
efficiency and is highly portable to other machines.

The basic concept is to design and implement task-specific modules that
can be independently tested, refined, and expanded. Although the modules are
functionally specialized, a major design goal is generality within the problem
domain of the specific function. Over a period of several years, MPCP was
developed as a platform of IOT system and measurement code building blocks
that could be reused between measurements and across systems. The use of
pre-tested modules substantially reduces the development time, cost, and per-

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 105

formance risk of unproven software. Because of the functional similarity of
JOT systems and measurements, the code reuse percentage for MPCP is quite
high.

MPCP design goals

MPCP implementation follows generally accepted software engineering
principles, practices, and open system standards. These are briefly described
below, with emphasis on why certain design choices were made, rather than
on how the software is specifically implemented.

Because customers require remote access and control of an IOT system, an
important design goal was to support a networked, distributed-processing
hardware environment. The Mpcp executes in such an environment. A typical
lOT system architecture is shown in Figure 1.

Another principal design goal was to separate functional tasks into dedicated
processes that could execute in distributed-processing, networked environments.
A "process" is a program that is being executed in the host machine. Each
process performs a specialized task with well-defined external interfaces. For
example. an IOT measurement inputs parameters from the user, manages the
hardware during data acquisition, saves the data in a database, and prints or
plots the measured data. The overall measurement is implemented as two
separate processes: one that interfaces with the user, and another that manages
the measurement equipment and performs the actual measurement. The 101
system's scheduler, datapool. and earth station management facilities are
implemented as self-contained dedicated "daemon" processes (i.e., processes
executing continuously in the background of the UNIX operating system). The
printing and plotting tasks are similarly managed. Problems are generally
contained within a specific process, and task-specific programs can be modi-
fied and recompiled when necessary, with little or no impact on the interfaces.

With separately executing processes. interprocess communication is required.
This capability is provided by the MPCP mail subsystem, which client processes
can access via calls to a library of mail functions. The mechanisms used by the
mail subsystem are completely transparent to clients. To support a distributed
processing (multiple-host) execution environment, the mail subsystem facilitates
intermachine interprocess communications in which processes can execute on
different host workstations and computers connected via a transmission control
protocol/internet protocol (rCP/IP) network. Figure 2 depicts such an
arrangement, with each box representing a separate workstation or computer.

Following another software principle, the MPCP is structured in a top-
down hierarchy which permits the software to be partitioned according to
function, and distinguishes between high-level and low-level functions. An

O 0

110

E
A
R
T
H

S
T
A
T
I
O
N

RF
 I

NT
ER
FA
CE

M
EA

SU
R

EM
EN

T
EQ

U
IP

M
EN

T
M
U
I
:

M
E
A
S
U
R
E
M
E
N
T

U
S
E
R

I
N
T
E
R
F
A
C
E

Fi
gu

re
 2

.
D

is
tr

ib
ut

ed
 P

ro
ce

ss
in

g
E

xe
cu

tio
n

E
nv

ir
on

m
en

t

A
11

11
I1

1

O 0

110

E
A
R
T
H

S
T
A
T
I
O
N

RF
 I

NT
ER
FA
CE

M
EA

SU
R

EM
EN

T
EQ

U
IP

M
EN

T
M
U
I
:

M
E
A
S
U
R
E
M
E
N
T

U
S
E
R

I
N
T
E
R
F
A
C
E

Fi
gu

re
 2

.
D

is
tr

ib
ut

ed
 P

ro
ce

ss
in

g
E

xe
cu

tio
n

E
nv

ir
on

m
en

t

A
11

11
I1

1

108 COMSAT II;CIINICAI. REVIEW VOLUME 23 NI MBL'R I. SPRING 1991

or measurement program, for example, is a high-level task. With proper code
structuring, the software developer who implements a high-level measurement
program need only be concerned with orchestrating the logical sequence of
activities necessary to perform the measurement, and not with the details of
lower-level functions. While the measurement may be required to access
instruments, the details of instrument management arc left to the driver that
controls each instrument. Similarly, while the instrument driver exerts control
via messages sent across the IEHH-488 bus that connects the instrument to the
computer, the developer of the instrument driver need not be concerned with
the details of managing the bus. Instead, the developer has available an IEEE-
488 library of bus management functions. MPCI services such as the scheduler
and datapool are conceptually at a level below that of the IoT measurement,
but above lower-level functions such as the 488 library. At any level, the
software developer has available the building blocks of lower-level MPCP
facilities, and can access them through well-defined interfaces. Figure 3 illus-
trates the general nature of this hierarchical implementation of MPCP.

An important objective in building computer-controlled IOT systems is to
maintain data integrity by preventing corruption [51. "Defensive code" is used
to detect en-or conditions and trap them before they propagate through to
corrupt the measurement data. Each module performs extensive error checking
of its inputs, as well as on the results of its own processing. Error-trapping is
performed by all levels of code. When errors are detected at any level, they are
managed consistently by calls to an error handling library, which underlies all
upper levels of code, as depicted in Figure 3. Error detection and reporting
throughout the code allows effective tracing of both programming errors and
operational errors (e.g., a disconnected instrument). Error handling techniques
are discussed later in this paper.

The MPCP Function Libraries also extend under all upper levels of code.
These libraries are used to segregate low-level functions from higher levels.
and are generally accessible by any program. although access to functions is
usually through the hierarchy of code modules.

As in hardware system design, a large software system such as an TOT or
measurement system is more easily managed by decomposing it into smaller
functional components, which are then treated as individual subsystems.
Subsystems are self-standing software projects which encompass a group of
similar and related functions that can be specified and implemented individually.
Changes in one subsystem are generally localized and do not usually affect
other subsystems. Decomposition of a large software project promotes modu-
lar system design, with the result that the project is easier to design, implement,
and enhance.

DATAPOOL

COSDAF
PRINT

INPUT
HANDLER

MICROwAVE MEASUREMENT SYSTEM SOP 1WARL 109

JOT MEASUREMENTS

ALARM HANDLER

INSTRUMENT
DRIVERS

IEEE488
DRIVERS

MAIL
SYSTEM

SCHEDULER

COSDAF
PLOT

COSDAF

ERROR HANDLING

MPCP FUNCTION LIBRARIES

UNIX OPERATING SYSTEM

DATABASE

USER
INTERFACE

COSDAF COMSAT Data File Format

Figure 3. MPCP Operating Sy stem

To achieve the design goals of maximum code reusability and system
implementation flexibility, the concept of data-driven design is employed
throughout the MMS. Whenever possible, the data that programs use are
separated into static ASCII text files that are human-readable and easily edited.
The program's behavior can be altered by simply editing the data file, rather
than changing the program code that processes it. This results in programs
that are easier to develop, test, and maintain , and that have the flexibility to
accommodate varying requirements from one 1OT system to the next.

The user interface is designed for ease of use and flexibility, and also has
the ability to check for erroneous user input (as far as practicable). The
interface is implemented separately from the measurement program, and is
called the measurement-user interface (MCI). The user interacts with the MUI
via an X Window to specify lOT measurement parameters and scheduling
information. The Mul display format is controlled by input data files, which
are easily modified by simple editing of Asc11-encoded text files, without the
need for program code changes. The user is notified if out-of-range data
values are entered. To reduce keying, the MCI is initially displayed with
default values preloaded in all fields and parameters.

108 COMSAT II;CIINICAI. REVIEW VOLUME 23 NI MBL'R I. SPRING 1991

or measurement program, for example, is a high-level task. With proper code
structuring, the software developer who implements a high-level measurement
program need only be concerned with orchestrating the logical sequence of
activities necessary to perform the measurement, and not with the details of
lower-level functions. While the measurement may be required to access
instruments, the details of instrument management arc left to the driver that
controls each instrument. Similarly, while the instrument driver exerts control
via messages sent across the IEHH-488 bus that connects the instrument to the
computer, the developer of the instrument driver need not be concerned with
the details of managing the bus. Instead, the developer has available an IEEE-
488 library of bus management functions. MPCI services such as the scheduler
and datapool are conceptually at a level below that of the IoT measurement,
but above lower-level functions such as the 488 library. At any level, the
software developer has available the building blocks of lower-level MPCP
facilities, and can access them through well-defined interfaces. Figure 3 illus-
trates the general nature of this hierarchical implementation of MPCP.

An important objective in building computer-controlled IOT systems is to
maintain data integrity by preventing corruption [51. "Defensive code" is used
to detect en-or conditions and trap them before they propagate through to
corrupt the measurement data. Each module performs extensive error checking
of its inputs, as well as on the results of its own processing. Error-trapping is
performed by all levels of code. When errors are detected at any level, they are
managed consistently by calls to an error handling library, which underlies all
upper levels of code, as depicted in Figure 3. Error detection and reporting
throughout the code allows effective tracing of both programming errors and
operational errors (e.g., a disconnected instrument). Error handling techniques
are discussed later in this paper.

The MPCP Function Libraries also extend under all upper levels of code.
These libraries are used to segregate low-level functions from higher levels.
and are generally accessible by any program. although access to functions is
usually through the hierarchy of code modules.

As in hardware system design, a large software system such as an TOT or
measurement system is more easily managed by decomposing it into smaller
functional components, which are then treated as individual subsystems.
Subsystems are self-standing software projects which encompass a group of
similar and related functions that can be specified and implemented individually.
Changes in one subsystem are generally localized and do not usually affect
other subsystems. Decomposition of a large software project promotes modu-
lar system design, with the result that the project is easier to design, implement,
and enhance.

DATAPOOL

COSDAF
PRINT

INPUT
HANDLER

MICROwAVE MEASUREMENT SYSTEM SOP 1WARL 109

JOT MEASUREMENTS

ALARM HANDLER

INSTRUMENT
DRIVERS

IEEE488
DRIVERS

MAIL
SYSTEM

SCHEDULER

COSDAF
PLOT

COSDAF

ERROR HANDLING

MPCP FUNCTION LIBRARIES

UNIX OPERATING SYSTEM

DATABASE

USER
INTERFACE

COSDAF COMSAT Data File Format

Figure 3. MPCP Operating Sy stem

To achieve the design goals of maximum code reusability and system
implementation flexibility, the concept of data-driven design is employed
throughout the MMS. Whenever possible, the data that programs use are
separated into static ASCII text files that are human-readable and easily edited.
The program's behavior can be altered by simply editing the data file, rather
than changing the program code that processes it. This results in programs
that are easier to develop, test, and maintain , and that have the flexibility to
accommodate varying requirements from one 1OT system to the next.

The user interface is designed for ease of use and flexibility, and also has
the ability to check for erroneous user input (as far as practicable). The
interface is implemented separately from the measurement program, and is
called the measurement-user interface (MCI). The user interacts with the MUI
via an X Window to specify lOT measurement parameters and scheduling
information. The Mul display format is controlled by input data files, which
are easily modified by simple editing of Asc11-encoded text files, without the
need for program code changes. The user is notified if out-of-range data
values are entered. To reduce keying, the MCI is initially displayed with
default values preloaded in all fields and parameters.

110 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

Because each task is specialized, the module's developer focuses on the
specific problem at hand and optimizes the code for that task. With well-
defined, constant interfaces, modules can be modified or improved without
affecting other modules. New modules, such as new instrument drivers, can
readily be added to the system, often by using an existing driver as a template
and modifying it as necessary.

Systems applications

Two systems are described which demonstrate the code reusability of the
MPCP software building blocks. Although these systems differ substantially in
mission and requirements, the MPCP platform provided the software foundation
upon which the application-specific code was built.

In the first example, an TOT system using MPCP building blocks was designed.
implemented, and deployed for the European Telecommunications Satellite
Organization (EUTELSAT) 111.12]. This system has performed the IOT of four
EUTELSAT n spacecraft, and continues to monitor their performance.

In the second example. MPCP components were used to implement RE
terminal supervisory equipment for a National Aeronautics and Space
Administration (NASA) ground station for the Advanced Communications
Technology Satellite (ACTS) program. In this system, a network of three
engineering workstations, supporting three simultaneous operators, performs
supervisory, status, and control functions for terminal and ground station RE
equipment.

Communientions and network environment

The tar system architecture supports local and wide-area networking (LAN/
WAN), as well as several communications protocols, network structures, and
transmission media. The system's transport/network layer implements TCP/IP
to guarantee end-to-end data delivery and integrity between communicating
devices on networks that support this protocol. The LAN's physical layer
implements the IEEE 802.3 (CSMA/CD Ethernet) protocol on coaxial cable op-
erating at 10 Mbit/s. The LAN connects to workstations, displays, terminal
servers, peripherals, communications equipment, and other PC-based LANs, as
shown in Figure I. The system supports WAN across leased lines, public
switched telephone networks, and public data networks at rates ranging from
2.4 to 19.2 kbit/s. with link-limited transmission speed. Standard serial com-
munications via RS-232 protocols and modem-connected data links are also
supported. As illustrated in Figure 1, a complement of microwave measure-

MICROWAVE MEASUREMENT SYSTEM SOFTWARE III

went equipment is connected to the IOT system workstation at the host earth
station via the IEEE-488 digital instrumentation standard bus.

This networked system architecture provides for equipment and resource
sharing, operational flexibility, performance enhancement, incremental
redundancy, and vendor and hardware independence. System resources such
as measurement hardware, plotters, printers, and communications facilities are
shared among IOT measurements and users. Incremental expansion of
computing, storage, display. and communications devices, as well as additional
peripherals, are readily accommodated. Additional workstations can he
connected to the network for load-sharing, and processes can execute on
different machines for operational flexibility and improved performance.

An important consideration when implementing a network-oriented system
is the ability to support interprocess and intermachine communications. The
X Window protocol supports communications in a network of dissimilar but
X-compatible workstations. When processes reside on the same machine,
Berkeley sockets support interprocess communications. The MPCP mail
subsystem also uses Berkeley sockets to implement a higher-level mechanism
for interprocess communications that extends across machine boundaries.

MPCP mail in/erproress communications

The MPCP mail subsystem provides clients with high-level, reliable, and
easy-to-program facilities for interprocess, intermachine, and internetwork
communications. The subsystem does the following:

• Provides interprocess communications (using TCP/IP) for different pro-
cesses operating on separate workstations across the network.

• Provides "atomic" transmission (data treated as an indivisible unit) of
large data structures.

• Provides the sender with verification of transmission.
• Implements a client-server model.
• Notifies clients if a connection is lost to a server process.

The MPCP mail subsystem supports the first three features in a fashion
similar to its main paradigm: the postal system. A client process mails data to
another process at a given address. The various data items to be mailed are
enclosed in an "envelope," which is received and/or delivered at the same
time. Like the postal mail system, the mail subsystem handles all delivery
details. Atomic transmission ensures that input/output transactions, once started,
are completed without interruption. When the addressee receives an envelope,

110 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

Because each task is specialized, the module's developer focuses on the
specific problem at hand and optimizes the code for that task. With well-
defined, constant interfaces, modules can be modified or improved without
affecting other modules. New modules, such as new instrument drivers, can
readily be added to the system, often by using an existing driver as a template
and modifying it as necessary.

Systems applications

Two systems are described which demonstrate the code reusability of the
MPCP software building blocks. Although these systems differ substantially in
mission and requirements, the MPCP platform provided the software foundation
upon which the application-specific code was built.

In the first example, an TOT system using MPCP building blocks was designed.
implemented, and deployed for the European Telecommunications Satellite
Organization (EUTELSAT) 111.12]. This system has performed the IOT of four
EUTELSAT n spacecraft, and continues to monitor their performance.

In the second example. MPCP components were used to implement RE
terminal supervisory equipment for a National Aeronautics and Space
Administration (NASA) ground station for the Advanced Communications
Technology Satellite (ACTS) program. In this system, a network of three
engineering workstations, supporting three simultaneous operators, performs
supervisory, status, and control functions for terminal and ground station RE
equipment.

Communientions and network environment

The tar system architecture supports local and wide-area networking (LAN/
WAN), as well as several communications protocols, network structures, and
transmission media. The system's transport/network layer implements TCP/IP
to guarantee end-to-end data delivery and integrity between communicating
devices on networks that support this protocol. The LAN's physical layer
implements the IEEE 802.3 (CSMA/CD Ethernet) protocol on coaxial cable op-
erating at 10 Mbit/s. The LAN connects to workstations, displays, terminal
servers, peripherals, communications equipment, and other PC-based LANs, as
shown in Figure I. The system supports WAN across leased lines, public
switched telephone networks, and public data networks at rates ranging from
2.4 to 19.2 kbit/s. with link-limited transmission speed. Standard serial com-
munications via RS-232 protocols and modem-connected data links are also
supported. As illustrated in Figure 1, a complement of microwave measure-

MICROWAVE MEASUREMENT SYSTEM SOFTWARE III

went equipment is connected to the IOT system workstation at the host earth
station via the IEEE-488 digital instrumentation standard bus.

This networked system architecture provides for equipment and resource
sharing, operational flexibility, performance enhancement, incremental
redundancy, and vendor and hardware independence. System resources such
as measurement hardware, plotters, printers, and communications facilities are
shared among IOT measurements and users. Incremental expansion of
computing, storage, display. and communications devices, as well as additional
peripherals, are readily accommodated. Additional workstations can he
connected to the network for load-sharing, and processes can execute on
different machines for operational flexibility and improved performance.

An important consideration when implementing a network-oriented system
is the ability to support interprocess and intermachine communications. The
X Window protocol supports communications in a network of dissimilar but
X-compatible workstations. When processes reside on the same machine,
Berkeley sockets support interprocess communications. The MPCP mail
subsystem also uses Berkeley sockets to implement a higher-level mechanism
for interprocess communications that extends across machine boundaries.

MPCP mail in/erproress communications

The MPCP mail subsystem provides clients with high-level, reliable, and
easy-to-program facilities for interprocess, intermachine, and internetwork
communications. The subsystem does the following:

• Provides interprocess communications (using TCP/IP) for different pro-
cesses operating on separate workstations across the network.

• Provides "atomic" transmission (data treated as an indivisible unit) of
large data structures.

• Provides the sender with verification of transmission.
• Implements a client-server model.
• Notifies clients if a connection is lost to a server process.

The MPCP mail subsystem supports the first three features in a fashion
similar to its main paradigm: the postal system. A client process mails data to
another process at a given address. The various data items to be mailed are
enclosed in an "envelope," which is received and/or delivered at the same
time. Like the postal mail system, the mail subsystem handles all delivery
details. Atomic transmission ensures that input/output transactions, once started,
are completed without interruption. When the addressee receives an envelope,

112 (0MS v I I E(HNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

the sender is provided with a "return receipt" (acknowledgment) verifying
successful transmission.

The MPCP snail subsystem software implements the last two features based
on a second paradigm an open telephone line between a client and a server.
Using the mail subsystem, a client (i . e., a process that requires sonic Service)
establishes an open line with a server (the process providing the service Such
as the scheduler or datapool). Once the line is established, mad can he ex-
changed between client and server. If the server process terminates or there
are problems in the network. the line is disconnected. The client process
detects the disconnection and reports an error condition. Any number of
clients can be supported in the network. For example, all MCr processes are
served by the scheduler. There can be any number of servers of different kinds
in the network, but there is only one server of a particular kind, such as the
MPCE scheduler.

Process-to-process mail communications are supported when processes
execute on different machines connected to the network. This feature permits
a distributed processing system implementation in which there may be more
than one machine with multiple clients and servers hosted on different machines,
as depicted in Figure 4. In the figure. SI, S1 S3. and S4 represent different
kinds of server processes, such as the scheduler, datapool. alarm manager, and
earth station interface manager. The lines connecting clients to servers are
mail connections, which are supported across serial data links.

The NIPCP scheduler

The MPCP scheduler is a server process that provides scheduling and resource
allocation across the network. The scheduler executes in the UNIX system
background as an independent daemon process and accepts requests for jobs
and resources from other processes. Scheduling is non-preemptive and is
provided on a first-come, first-served basis. Jobs are run based on the requested
time and the availability of resources. The scheduler exchanges messages with
its clients via the mail subsystem. and receives requests from MUI processes to
schedule a measurement process at a specified time. The scheduler manages
the sharing of resources, handles global remotc/local control of instrumentation.
and provides the means for a user to determine the status of a job that is
running in the background.

Measurements can be scheduled by the user to run at any time of day, on
any day. They can also he scheduled to run repetitively for a user-specified
duration at a user-specified interval. Multiple measurements can be scheduled
for execution at any time. The scheduler also supplies the link necessary to

(0
0

1011 x
V

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 113

0z
0

m

d

E ^
E'z
z m

.0 3ti
o e
1 0) 2

0
p: r-i e7
01 I z
¢1w J z 001 0

01 x
ml

1 I 0
L J m

T z

112 (0MS v I I E(HNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

the sender is provided with a "return receipt" (acknowledgment) verifying
successful transmission.

The MPCP snail subsystem software implements the last two features based
on a second paradigm an open telephone line between a client and a server.
Using the mail subsystem, a client (i . e., a process that requires sonic Service)
establishes an open line with a server (the process providing the service Such
as the scheduler or datapool). Once the line is established, mad can he ex-
changed between client and server. If the server process terminates or there
are problems in the network. the line is disconnected. The client process
detects the disconnection and reports an error condition. Any number of
clients can be supported in the network. For example, all MCr processes are
served by the scheduler. There can be any number of servers of different kinds
in the network, but there is only one server of a particular kind, such as the
MPCE scheduler.

Process-to-process mail communications are supported when processes
execute on different machines connected to the network. This feature permits
a distributed processing system implementation in which there may be more
than one machine with multiple clients and servers hosted on different machines,
as depicted in Figure 4. In the figure. SI, S1 S3. and S4 represent different
kinds of server processes, such as the scheduler, datapool. alarm manager, and
earth station interface manager. The lines connecting clients to servers are
mail connections, which are supported across serial data links.

The NIPCP scheduler

The MPCP scheduler is a server process that provides scheduling and resource
allocation across the network. The scheduler executes in the UNIX system
background as an independent daemon process and accepts requests for jobs
and resources from other processes. Scheduling is non-preemptive and is
provided on a first-come, first-served basis. Jobs are run based on the requested
time and the availability of resources. The scheduler exchanges messages with
its clients via the mail subsystem. and receives requests from MUI processes to
schedule a measurement process at a specified time. The scheduler manages
the sharing of resources, handles global remotc/local control of instrumentation.
and provides the means for a user to determine the status of a job that is
running in the background.

Measurements can be scheduled by the user to run at any time of day, on
any day. They can also he scheduled to run repetitively for a user-specified
duration at a user-specified interval. Multiple measurements can be scheduled
for execution at any time. The scheduler also supplies the link necessary to

(0
0

1011 x
V

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 113

0z
0

m

d

E ^
E'z
z m

.0 3ti
o e
1 0) 2

0
p: r-i e7
01 I z
¢1w J z 001 0

01 x
ml

1 I 0
L J m

T z

114 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I , SPRING 1993

communicate scheduling information between the Mut and the measurement
processes.

When the time arrives to execute the requested measurement, the scheduler
verifies the availability of the required resources and initiates the measurement
process in the appropriate workstation. When the measurement process begins,
it requests from the scheduler (via mail) the needed resources. The scheduler
determines that a mail connection has been established with the measurement
process, and that the process is actually executing. It then grants the requested
resources and locks them for the duration of the measurement, or until the
mail connection between the scheduler and the measurement process is broken.
By ensuring that the process is actually running before resources are committed,
the scheduler prevents a potential lockup situation. If the scheduler were to
begin a measurement process and immediately allocate and lock the resources,
the measurement could fail to start for some reason, or fail to establish a mail
connection, and the resources would be unavailable for other uses.

If the resources required for a scheduled measurement are unavailable,
execution of the measurement is deferred until they become available. Since
scheduling conflicts are resolved on a first-come, first-served basis, a particu-
lar measurement may have to wait its turn in a job queue. A planned expan-
sion of the scheduler will provide for the prioritization of measurements.

An example will illustrate the scheduler's operation and interaction with
measurement processes. A system comprising three workstations, with one
spectrum analyzer and two power meters connected to workstation 3, is
assumed. MUI programs in workstations I and 2 have each requested that an
EIRP measurement be performed at 10:00 a.m. the next morning. In addition,
workstation 2 has requested a power measurement at the same time. EIRP
measurements require both a spectrum analyzer and a power meter, while
power measurements require only a single power meter.

At 10:00 a.m. the following morning, the scheduler ascertains that both
power meters and the spectrum analyzer are available, and grants the request
from workstation 1 (which was received first) by executing an EIRP
measurement and locking power meter I and the spectrum analyzer. As a
result, the EIRP measurement request from workstation 2 cannot be granted at
this time, since only power meter 2 is available. Since the power measurement
also requested by workstation 2 requires a single power meter, the scheduler
initiates the power measurement process, establishes a mail connection with
that process, and locks power meter 2. When the first EIRP measurement
terminates and both the spectrum analyzer and power meter I become available,
the scheduler executes the EIRP measurement requested by the Mul process
running on workstation 2, establishes an open mail connection with the EIRP

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 115

measurement process, and locks power meter 1 and the spectrum analyzer for
the duration of that measurement. When the measurement process terminates
(normally or abnormally), the scheduler releases the resources, which are then
available for the next request.

The scheduler determines when to start a particular measurement, based on
the system clock and the scheduling information provided by the Mui when
the measurement was specified. The UNIX operating system could start jobs at
the scheduled time, if that were the extent of the requirement. However, the
scheduler performs two additional, essential functions. First, it begins a job at
the scheduled time with the user-specified arguments, which can vary in
number and value with each running of a measurement.

The second, more fundamental function of the scheduler is to manage the
sharing of one set of microwave measurement and earth station equipment
resources. These resources include microwave test equipment (such as the
spectrum analyzer and power meters), earth station equipment (such as uplink
and downlink chains, the antenna, automatic saturation control units, and
radiometers), files, mail connections, and memory. Each resource is identified
by name (resource ID) and the maximum number of users. Resources may
also belong to resource groups, in which case the group is given a single
name, such as "Uplink I," which would include the entire chain of earth
station equipment forming an uplink. The scheduler can allocate both indi-
vidual resources and resource groups to jobs. Resource sharing is cooperative,
not enforced or preemptive.

The scheduler also manages the state of resources when they are not
controlled by a measurement process. For example, it makes certain that
instrumentation used by a job is placed into a quiescent state when a job is
complete. This ensures that jobs cancelled abortively do not leave instrument
resources in an undesirable or unknown state. Since the scheduler controls all
system resources, it is responsible for handling user requests to place
instrumentation into its local state when it is not being used by an executing
process. Such requests from measurement processes are handled via the MPCP
mail subsystem.

The MPCI datapool

The MPCP datapool server is a memory-resident data area that functions as
a depository for information to be shared system-wide. All or system processes
can access the datapool, which will accommodate arbitrary data. The datapool
implements a client-server model in which clients such as MCI processes
update entries in the datapool and/or request the most up-to-date information
from the datapool, via the mail subsystem.

114 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I , SPRING 1993

communicate scheduling information between the Mut and the measurement
processes.

When the time arrives to execute the requested measurement, the scheduler
verifies the availability of the required resources and initiates the measurement
process in the appropriate workstation. When the measurement process begins,
it requests from the scheduler (via mail) the needed resources. The scheduler
determines that a mail connection has been established with the measurement
process, and that the process is actually executing. It then grants the requested
resources and locks them for the duration of the measurement, or until the
mail connection between the scheduler and the measurement process is broken.
By ensuring that the process is actually running before resources are committed,
the scheduler prevents a potential lockup situation. If the scheduler were to
begin a measurement process and immediately allocate and lock the resources,
the measurement could fail to start for some reason, or fail to establish a mail
connection, and the resources would be unavailable for other uses.

If the resources required for a scheduled measurement are unavailable,
execution of the measurement is deferred until they become available. Since
scheduling conflicts are resolved on a first-come, first-served basis, a particu-
lar measurement may have to wait its turn in a job queue. A planned expan-
sion of the scheduler will provide for the prioritization of measurements.

An example will illustrate the scheduler's operation and interaction with
measurement processes. A system comprising three workstations, with one
spectrum analyzer and two power meters connected to workstation 3, is
assumed. MUI programs in workstations I and 2 have each requested that an
EIRP measurement be performed at 10:00 a.m. the next morning. In addition,
workstation 2 has requested a power measurement at the same time. EIRP
measurements require both a spectrum analyzer and a power meter, while
power measurements require only a single power meter.

At 10:00 a.m. the following morning, the scheduler ascertains that both
power meters and the spectrum analyzer are available, and grants the request
from workstation 1 (which was received first) by executing an EIRP
measurement and locking power meter I and the spectrum analyzer. As a
result, the EIRP measurement request from workstation 2 cannot be granted at
this time, since only power meter 2 is available. Since the power measurement
also requested by workstation 2 requires a single power meter, the scheduler
initiates the power measurement process, establishes a mail connection with
that process, and locks power meter 2. When the first EIRP measurement
terminates and both the spectrum analyzer and power meter I become available,
the scheduler executes the EIRP measurement requested by the Mul process
running on workstation 2, establishes an open mail connection with the EIRP

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 115

measurement process, and locks power meter 1 and the spectrum analyzer for
the duration of that measurement. When the measurement process terminates
(normally or abnormally), the scheduler releases the resources, which are then
available for the next request.

The scheduler determines when to start a particular measurement, based on
the system clock and the scheduling information provided by the Mui when
the measurement was specified. The UNIX operating system could start jobs at
the scheduled time, if that were the extent of the requirement. However, the
scheduler performs two additional, essential functions. First, it begins a job at
the scheduled time with the user-specified arguments, which can vary in
number and value with each running of a measurement.

The second, more fundamental function of the scheduler is to manage the
sharing of one set of microwave measurement and earth station equipment
resources. These resources include microwave test equipment (such as the
spectrum analyzer and power meters), earth station equipment (such as uplink
and downlink chains, the antenna, automatic saturation control units, and
radiometers), files, mail connections, and memory. Each resource is identified
by name (resource ID) and the maximum number of users. Resources may
also belong to resource groups, in which case the group is given a single
name, such as "Uplink I," which would include the entire chain of earth
station equipment forming an uplink. The scheduler can allocate both indi-
vidual resources and resource groups to jobs. Resource sharing is cooperative,
not enforced or preemptive.

The scheduler also manages the state of resources when they are not
controlled by a measurement process. For example, it makes certain that
instrumentation used by a job is placed into a quiescent state when a job is
complete. This ensures that jobs cancelled abortively do not leave instrument
resources in an undesirable or unknown state. Since the scheduler controls all
system resources, it is responsible for handling user requests to place
instrumentation into its local state when it is not being used by an executing
process. Such requests from measurement processes are handled via the MPCP
mail subsystem.

The MPCI datapool

The MPCP datapool server is a memory-resident data area that functions as
a depository for information to be shared system-wide. All or system processes
can access the datapool, which will accommodate arbitrary data. The datapool
implements a client-server model in which clients such as MCI processes
update entries in the datapool and/or request the most up-to-date information
from the datapool, via the mail subsystem.

116 COMSAT TECHNICAL REVIEW VOLUME 21 NUMBER I. SPRING 1991

Maintaining data integrity within the datapool and preventing "racing"
conditions are critical design issues. A racing condition can arise as follows.
Suppose process A reads the current value for datum I in the datapool and,
based on that information, updates datum 2 in the datapool. Process B has
previously read datum 2, prior to its update by process A, and, based on this
information, updates datum 1. Process A assumes that the datum I value it
read is valid and up-to-date, when in fact datum I was subsequently updated
by process B. Thus, process A continues execution with data that are not
current. Similarly, process B assumes that the datum 2 value it read is valid
and up-to-date, when in fact datum 2 was subsequently updated by process A.
At this point, a racing condition has been created in the datapool, and neither
process has up-to-date data. This situation is avoided by implementing the
datapool as described below.

The datapool is not merely a passive receptacle and reporter of data,
because it can notify clients of changes to datapool entries. A client can
register with the datapool a list of entries of interest. Whenever the status of a
list entry changes (e.g., it is changed in value or deleted, or the process that
owns the entry terminates), the client is notified by the datapool and provided
with the current value for the data item. A client may request and receive the
current value of any item in the datapool at any time, and thus is assured of
having the most up-to-date values for items of interest.

As shown in Figure 5, client processes do not access the datapool directly.
When they need to add, modify, or remove data, clients access the datapool
via a library of datapool functions. These functions then transmit the request
to the datapool process, which accesses the data area on behalf of the clients.
Only the datapool process can access entries in the data area itself, to prevent
potential corruption of the datapool by client processes and to maintain datapool
integrity. A data-locking mechanism is applied to guarantee that only one data
update can occur at any given time.

System-wide standard messages are used to transmit information to and
from the datapool. A typical datapool process operation involves two types of
message transmission: the client's request message received by the datapool
process, and the acknowledgment returned with the requested data to the
client. All communications between the datapool and its clients (Figure 5) are
via the MPCP mail subsystem, which is transparent to clients. Datapool functions
are available to the client to request data creation, deletion, modification.
retrieval, and the addition or deletion of the client process from the notification
list. These functions assemble mail messages, send mail to the datapool process
via the mail subsystem, and inform the calling program whether or not the
operation was successful. The datapool library implementation hides both the

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 117

MPCP MAIL

Figure 5. MPCP Datapool and Clients

type of interprocess communications media and the fact that messages are
used.

The datapool also supports the operation of the Muis. When an mut is
opened by a user. it establishes a mail connection with the datapool. Assume,
for example, that client process I in Figure 5 is an MCI in which the user has
specified spacecraft I, and client process 2 is another MCI in which spacecraft 2
is specified. If a third MCI is opened, it may want to know toward which
spacecraft the earth station is currently pointing, or if another process changes
the current spacecraft in the datapool. The datapool maintains such system-
level information and can notify a requesting client process of the current
status and configuration for both the spacecraft and the earth station.

LOT measurement implementation

lOT measurements are the core of computer-controlled TOT systems. An LOT
system is composed of numerous IOT measurement programs, their
corresponding MuIs, and system control and data processing functions. This
section discusses the concepts and principles underlying the implementation
of measurements. Overall software organization, data-driven design. user
interface implementation, error handling, and data processing features are
described.

Since measurement data are a primary concern in an TOT system, data
integrity is essential. Because the measurement is often fully automated, the
measurement code must be able to detect and report errors, which can arise

116 COMSAT TECHNICAL REVIEW VOLUME 21 NUMBER I. SPRING 1991

Maintaining data integrity within the datapool and preventing "racing"
conditions are critical design issues. A racing condition can arise as follows.
Suppose process A reads the current value for datum I in the datapool and,
based on that information, updates datum 2 in the datapool. Process B has
previously read datum 2, prior to its update by process A, and, based on this
information, updates datum 1. Process A assumes that the datum I value it
read is valid and up-to-date, when in fact datum I was subsequently updated
by process B. Thus, process A continues execution with data that are not
current. Similarly, process B assumes that the datum 2 value it read is valid
and up-to-date, when in fact datum 2 was subsequently updated by process A.
At this point, a racing condition has been created in the datapool, and neither
process has up-to-date data. This situation is avoided by implementing the
datapool as described below.

The datapool is not merely a passive receptacle and reporter of data,
because it can notify clients of changes to datapool entries. A client can
register with the datapool a list of entries of interest. Whenever the status of a
list entry changes (e.g., it is changed in value or deleted, or the process that
owns the entry terminates), the client is notified by the datapool and provided
with the current value for the data item. A client may request and receive the
current value of any item in the datapool at any time, and thus is assured of
having the most up-to-date values for items of interest.

As shown in Figure 5, client processes do not access the datapool directly.
When they need to add, modify, or remove data, clients access the datapool
via a library of datapool functions. These functions then transmit the request
to the datapool process, which accesses the data area on behalf of the clients.
Only the datapool process can access entries in the data area itself, to prevent
potential corruption of the datapool by client processes and to maintain datapool
integrity. A data-locking mechanism is applied to guarantee that only one data
update can occur at any given time.

System-wide standard messages are used to transmit information to and
from the datapool. A typical datapool process operation involves two types of
message transmission: the client's request message received by the datapool
process, and the acknowledgment returned with the requested data to the
client. All communications between the datapool and its clients (Figure 5) are
via the MPCP mail subsystem, which is transparent to clients. Datapool functions
are available to the client to request data creation, deletion, modification.
retrieval, and the addition or deletion of the client process from the notification
list. These functions assemble mail messages, send mail to the datapool process
via the mail subsystem, and inform the calling program whether or not the
operation was successful. The datapool library implementation hides both the

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 117

MPCP MAIL

Figure 5. MPCP Datapool and Clients

type of interprocess communications media and the fact that messages are
used.

The datapool also supports the operation of the Muis. When an mut is
opened by a user. it establishes a mail connection with the datapool. Assume,
for example, that client process I in Figure 5 is an MCI in which the user has
specified spacecraft I, and client process 2 is another MCI in which spacecraft 2
is specified. If a third MCI is opened, it may want to know toward which
spacecraft the earth station is currently pointing, or if another process changes
the current spacecraft in the datapool. The datapool maintains such system-
level information and can notify a requesting client process of the current
status and configuration for both the spacecraft and the earth station.

LOT measurement implementation

lOT measurements are the core of computer-controlled TOT systems. An LOT
system is composed of numerous IOT measurement programs, their
corresponding MuIs, and system control and data processing functions. This
section discusses the concepts and principles underlying the implementation
of measurements. Overall software organization, data-driven design. user
interface implementation, error handling, and data processing features are
described.

Since measurement data are a primary concern in an TOT system, data
integrity is essential. Because the measurement is often fully automated, the
measurement code must be able to detect and report errors, which can arise

118 COMSAT TECHNICAL REVIEW VOLUME 23 NCMHF: R 1, SPRING 1993

from many sources, including real-world anomalies. For example, a measure-
ment may require the use of a piece of test equipment that has been turned off
or disconnected. The code then issues an error message, and the user may
correct the problem (e.g., reconnect the instrument) and request that the mea-
surement continue, or cancel the measurement.

Measurement architecture

The ideal IO'r is one in which the overall measurement is implemented as
two separate programs: the MUI, and the measurement itself. A model of the
lOT measurement architecture is shown in Figure 6.

Communication between the MUI and the measurement processes is
facilitated by the MPCP mail subsystem, the scheduler, and the datapool server.
The mail subsystem provides interprocess communications between the MUI
and the scheduler, and between the scheduler and the measurement program
or other peer client processes. Properly designed interfaces between commu-
nicating processes are essential for coordinating the various activities associated
with the overall measurement.

The scheduler allocates system resources, including earth station resources,
and maintains their availability status. The MCI sends a job request message
via the mail system to the scheduler and communicates the name of the
measurement program, the name of a file containing a list of measurement
arguments (called the "argsfile"). and scheduling information. Before starting
a job that invokes a measurement program, the scheduler determines the
availability of required resources by accessing a file that lists the resources
required by each measurement. If the resources are currently unavailable, the
scheduler places the job in a job-wait queue and reschedules it.

If the resources are available, the scheduler starts the measurement via a
command to the UNIX operating system. If UNIX initiation is successful, the
program becomes an executing process. The measurement process performs
an initialization and establishes a mail session connection to the scheduler. It
then accesses the resources file and sends the scheduler a message indicating
that the process is initialized and running, and requesting access to system
resources such as the spectrum analyzer, an uplink path in the earth station,
and an uplink synthesizer. If available, the resources are allocated as requested.

By structuring the overall measurement in this manner, Mu1 and measure-
ment programs can be designed, implemented, tested, and maintained
independently and in parallel. This supports modularity and encapsulation of
the respective programs. Team personnel with complementary skills can work
on different tasks, making optimum use of their software capabilities and

SNFCECRAFO jl
CONFIGURATION /

MUI
ERROR LOG

MICROWAVE MEASUREMENT SYSTEM SOFTWARE

STUB
FILE

7 EARTH JOB
EARTH STATION

PROCESS K--r MENTi
EQUIPMENT '(DAEMON,)/ N PROCESS

MEASUREMENT
EQUIPMENT

PRINT
REPORTS

MEASUREMENT
ERROR LOG

PARAMETERS
FILE

Figure 6. JOT Measurement Model

PRINT WINDOW
(CRT)

119

118 COMSAT TECHNICAL REVIEW VOLUME 23 NCMHF: R 1, SPRING 1993

from many sources, including real-world anomalies. For example, a measure-
ment may require the use of a piece of test equipment that has been turned off
or disconnected. The code then issues an error message, and the user may
correct the problem (e.g., reconnect the instrument) and request that the mea-
surement continue, or cancel the measurement.

Measurement architecture

The ideal IO'r is one in which the overall measurement is implemented as
two separate programs: the MUI, and the measurement itself. A model of the
lOT measurement architecture is shown in Figure 6.

Communication between the MUI and the measurement processes is
facilitated by the MPCP mail subsystem, the scheduler, and the datapool server.
The mail subsystem provides interprocess communications between the MUI
and the scheduler, and between the scheduler and the measurement program
or other peer client processes. Properly designed interfaces between commu-
nicating processes are essential for coordinating the various activities associated
with the overall measurement.

The scheduler allocates system resources, including earth station resources,
and maintains their availability status. The MCI sends a job request message
via the mail system to the scheduler and communicates the name of the
measurement program, the name of a file containing a list of measurement
arguments (called the "argsfile"). and scheduling information. Before starting
a job that invokes a measurement program, the scheduler determines the
availability of required resources by accessing a file that lists the resources
required by each measurement. If the resources are currently unavailable, the
scheduler places the job in a job-wait queue and reschedules it.

If the resources are available, the scheduler starts the measurement via a
command to the UNIX operating system. If UNIX initiation is successful, the
program becomes an executing process. The measurement process performs
an initialization and establishes a mail session connection to the scheduler. It
then accesses the resources file and sends the scheduler a message indicating
that the process is initialized and running, and requesting access to system
resources such as the spectrum analyzer, an uplink path in the earth station,
and an uplink synthesizer. If available, the resources are allocated as requested.

By structuring the overall measurement in this manner, Mu1 and measure-
ment programs can be designed, implemented, tested, and maintained
independently and in parallel. This supports modularity and encapsulation of
the respective programs. Team personnel with complementary skills can work
on different tasks, making optimum use of their software capabilities and

SNFCECRAFO jl
CONFIGURATION /

MUI
ERROR LOG

MICROWAVE MEASUREMENT SYSTEM SOFTWARE

STUB
FILE

7 EARTH JOB
EARTH STATION

PROCESS K--r MENTi
EQUIPMENT '(DAEMON,)/ N PROCESS

MEASUREMENT
EQUIPMENT

PRINT
REPORTS

MEASUREMENT
ERROR LOG

PARAMETERS
FILE

Figure 6. JOT Measurement Model

PRINT WINDOW
(CRT)

119

120 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993

experience. Each program developer uses the most appropriate programming
paradigm. For example, since (he user interacts with the Mel via a mouse and
keyboard, the Mul must respond to unpredictable events (e.g., a mouse click or
the pressing of a key) and is therefore implemented using an event-oriented
programming paradigm. The measurement program, on the other hand, inter-
acts with the microwave measurement and earth station equipment in a
predictable manner, and thus is implemented in an algorithmic, procedure-
oriented programming paradigm (although it can be interrupted by unexpec-
ted behavior when an instrument issues a service request interrupt on the
IEEE-488 bus).

Data-driven implementation

The MMS software is implemented by using text files and avoiding hard-
coding wherever possible, As shown in Figure 6, text files are used to exchange
information between processes, as a complement to interprocess mail
communications. The following files are used, and will be discussed in context:
MUI input, measurement argument, stub, resource, spacecraft configuration,
earth station calibration data, measurement parameter, and print and plot style.
Since these files are structured during the system design phase, they can be
constructed to hold any information desired, and can be customized to meet
customer requirements. Thus, the files provide flexibility and adaptability to
the measurement system design.

Both the file management procedures and storage format are standardized
within the MMS software. File operations such as open. read, write, and close
are performed via calls to an Mven library. Files are formatted in a standard
COMSAT Data File Format (coSDAF) and stored as ASCII-coded text. COSDAF
files can be viewed, edited, and imported into other application programs.

System behavior can be altered by editing the files, which minimizes the
need to recompile the program when changes are required. For example, the
appearance of an MUI window on the display is controlled by an MCI input file.
The number of Mul controls, their position, and type (e.g., pushbuttons, edit
fields, and pop-up menu selections) are easily changed by editing this file.

Although MMS files are easily edited, they are static in the sense that they
generally remain unchanged for a particular sequence of lot measurements. In
fact, once constructed, they seldom change, although they can be modified
when necessary. The spacecraft configuration file, for example, includes
information regarding spacecraft characteristics, channel characteristics such
as center frequency and bandwidth, transmit and receive beams, transponder
gain settings, and orbital parameters. Another file, the frequency plan, identifies
channels and/or carrier slots, their center frequencies and bandwidths, power
threshold levels for alarms, expected signal modulation, and other frequency-

MICROWAVE MBASUREMI.NT SYS TEM SOFTWARE 121

related information. Other files, such as the earth station calibration file, store
calibration information such as antenna gain is frequency and coupler value
vs frequency.

The measurement process reads particular files when required. The use of
common files by different measurement processes guarantees uniformity of
information. Also, since the user does not have to constantly reenter the same
information through the keyboard, user input errors and fatigue are reduced.

User interface design

Effective operation of a measurement system is highly dependent on the
design, behavior, flexibility, ease of use, and consistency of the user interface.
More than 30 years of human-machine interface research (References 6 and 7,
for example) have indicated that the most effective technique is a graphically
based interface that allows a user to indicate a desired action by "pointing and
clicking" in windows on the display by using a mouse device. The keyboard is
used to enter parameter values and data. This technique is in contrast to the
older command-line-based interface that requires the user to accurately
remember and type in esoteric command codes. Graphically based interfaces
are now common on many computer systems, such as the popular Apple
Macintosh [8] and desktop computers running Microsoft Windows. The
X Window-based MtiI enables the ioT system user to specify measurement
parameters. It contains edit fields, pushbuttons, toggle buttons, and radio
buttons. Buttons are actuated by pointing and clicking with the mouse. A
typical Mel is shown in Figure 7.

Muts and other windows meet the following IoT system operational
requirements:

• Permit the user to easily, quickly, and intuitively set up IOT
measurements.

• Enable the user to search through the measurement database to retrieve
files meeting user-specified criteria.

• Enable the user to process high volumes of measurement data into
plots and printouts.

• Inform the user of input range and type errors.
• Inform the system operator of errors encountered during measurements

and other activities.

• Require minimal training, so new users can gain proficiency rapidly.

• Preserve operational flexibility for nonroutine activities, such as
anomaly investigations.

120 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993

experience. Each program developer uses the most appropriate programming
paradigm. For example, since (he user interacts with the Mel via a mouse and
keyboard, the Mul must respond to unpredictable events (e.g., a mouse click or
the pressing of a key) and is therefore implemented using an event-oriented
programming paradigm. The measurement program, on the other hand, inter-
acts with the microwave measurement and earth station equipment in a
predictable manner, and thus is implemented in an algorithmic, procedure-
oriented programming paradigm (although it can be interrupted by unexpec-
ted behavior when an instrument issues a service request interrupt on the
IEEE-488 bus).

Data-driven implementation

The MMS software is implemented by using text files and avoiding hard-
coding wherever possible, As shown in Figure 6, text files are used to exchange
information between processes, as a complement to interprocess mail
communications. The following files are used, and will be discussed in context:
MUI input, measurement argument, stub, resource, spacecraft configuration,
earth station calibration data, measurement parameter, and print and plot style.
Since these files are structured during the system design phase, they can be
constructed to hold any information desired, and can be customized to meet
customer requirements. Thus, the files provide flexibility and adaptability to
the measurement system design.

Both the file management procedures and storage format are standardized
within the MMS software. File operations such as open. read, write, and close
are performed via calls to an Mven library. Files are formatted in a standard
COMSAT Data File Format (coSDAF) and stored as ASCII-coded text. COSDAF
files can be viewed, edited, and imported into other application programs.

System behavior can be altered by editing the files, which minimizes the
need to recompile the program when changes are required. For example, the
appearance of an MUI window on the display is controlled by an MCI input file.
The number of Mul controls, their position, and type (e.g., pushbuttons, edit
fields, and pop-up menu selections) are easily changed by editing this file.

Although MMS files are easily edited, they are static in the sense that they
generally remain unchanged for a particular sequence of lot measurements. In
fact, once constructed, they seldom change, although they can be modified
when necessary. The spacecraft configuration file, for example, includes
information regarding spacecraft characteristics, channel characteristics such
as center frequency and bandwidth, transmit and receive beams, transponder
gain settings, and orbital parameters. Another file, the frequency plan, identifies
channels and/or carrier slots, their center frequencies and bandwidths, power
threshold levels for alarms, expected signal modulation, and other frequency-

MICROWAVE MBASUREMI.NT SYS TEM SOFTWARE 121

related information. Other files, such as the earth station calibration file, store
calibration information such as antenna gain is frequency and coupler value
vs frequency.

The measurement process reads particular files when required. The use of
common files by different measurement processes guarantees uniformity of
information. Also, since the user does not have to constantly reenter the same
information through the keyboard, user input errors and fatigue are reduced.

User interface design

Effective operation of a measurement system is highly dependent on the
design, behavior, flexibility, ease of use, and consistency of the user interface.
More than 30 years of human-machine interface research (References 6 and 7,
for example) have indicated that the most effective technique is a graphically
based interface that allows a user to indicate a desired action by "pointing and
clicking" in windows on the display by using a mouse device. The keyboard is
used to enter parameter values and data. This technique is in contrast to the
older command-line-based interface that requires the user to accurately
remember and type in esoteric command codes. Graphically based interfaces
are now common on many computer systems, such as the popular Apple
Macintosh [8] and desktop computers running Microsoft Windows. The
X Window-based MtiI enables the ioT system user to specify measurement
parameters. It contains edit fields, pushbuttons, toggle buttons, and radio
buttons. Buttons are actuated by pointing and clicking with the mouse. A
typical Mel is shown in Figure 7.

Muts and other windows meet the following IoT system operational
requirements:

• Permit the user to easily, quickly, and intuitively set up IOT
measurements.

• Enable the user to search through the measurement database to retrieve
files meeting user-specified criteria.

• Enable the user to process high volumes of measurement data into
plots and printouts.

• Inform the user of input range and type errors.
• Inform the system operator of errors encountered during measurements

and other activities.

• Require minimal training, so new users can gain proficiency rapidly.

• Preserve operational flexibility for nonroutine activities, such as
anomaly investigations.

122 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993 N MICROWAVE MEASUREMENT SYSTEM SOFTWARE 123

XF DIEIRP

Spacecraft
S/G 1-F2
55P: ZO F, 0.0 N
Ha Be..:
T. Beam:
Bea.
Chamois:

EB
SW
A
4N

SO CNFG: EB -A-IAA-1Y-SW -32

udaaea

'5. LiM1 75.0IaOW

Search BW : 3.00..

o IPFO
EDF
Non Interactive

0
Wartlet
m Clear

tight cmuna
Heavy Clouds
Fog
Bak,
Snow

Start E/S EIHP : 65.0 dBW

2nC Can- , Frey: 10.0 'NHz

EIRP
2nd CariIer Saturatbh
Screen Plot a Screen PrInt

neanle

Start Date: 14 Jun 91 TMIS:

Stop Date: 14 .&IN Hl Time:

Interval DaYisl:0

Figure 7. FLUX/EIRP Measurement User Interface Window

Some IOT measurements can be run automatically, without the presence of
an operator, while others are interactive and require operator inputs through-
out the measurement. Some measurements can be run in either mode (selectable
by the user as the "Non Interactive" option shown in Figure 7), which can be
toggled on or off by clicking the mouse.

Implementation of an effective user interface requires careful thought and
considerable effort. All MUI6 and other windows are implemented using Open
Software Foundation's OSF/Motif toolkit and style guidelines [7]. MUIS are
implemented to be consistent in behavior and similar in appearance. Buttons
and controls that perform the same function from one MUI to another are
positioned in the same location, so that the user who has learned one Mul has a
familiar model to follow. When opened, Muls are displayed with default
parameter values and control settings, and have a `form-fill-in"/menu-selection
presentation format. The default values are read from an ASCII file, which is

easily modified. If an input is invalid (e.g.. an out-of-range value is typed in),
the user is immediately notified of the error and prompted for another input.

Often, several input parameters are coupled in a dependency relationship to
preserve maximum operational flexibility. If a user specifies a parameter that
is coupled to others, the related parameter or parameters will also be changed
automatically. For example, the user may be required to specify a bandwidth,
a step size, and the number of steps to be performed by a measurement. These
parameters may be coupled such that specifying the number of steps and step
size automatically determines the bandwidth parameter as their product.

MU1-measurement process interface

Once the user has configured the measurement via the MCI, the specified
parameters and controls are communicated to the measurement process via a
command-line interface similar to the standard UNIX system command interface.
In normal operation, the user initiates a particular measurement by filling in
the appropriate MUI and scheduling the measurement. The MUI is displayed on
a workstation or X-Terminal. The user then presses the OK button on the MUi
(see Figure 7), and the MUI communicates this information to the measurement
process via the scheduler. At the scheduled time, the scheduler checks to see if
the required resources are available, starts the measurement process, establishes
a mail connection to the process, and allocates the requested resources.

To preserve maximum system flexibility, measurement programs can be
run without an MUI workstation or X-Terminal by using a standard character-
based ASCII terminal. A user can run an JOT measurement at the host earth
station from a remote site, such as the user's home, by using a personal or
portable computer and modem. For example, during an anomaly investigation,
it may be desirable to alter the normal flow of system operation or to make a
particular series of measurements not implemented by the IOT system mull.
This flexibility is achieved as described below.

Following UNIX conventions, an IOT measurement program can be invoked
from a connected terminal by typing the name of the executable program and
optional arguments as follows:

meas_name [-opt <opt_arg> ...]

where meas_name is the name of the measurement program, -opt specifies
an option, and <opt_arg> specifies an argument to an option. For example,
the command line to invoke the IPFD/EIRP measurement with options set for a
3-MHz search bandwidth and saturation is

flux_eirp -Search_bw 3.0 -Saturation

122 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993 N MICROWAVE MEASUREMENT SYSTEM SOFTWARE 123

XF DIEIRP

Spacecraft
S/G 1-F2
55P: ZO F, 0.0 N
Ha Be..:
T. Beam:
Bea.
Chamois:

EB
SW
A
4N

SO CNFG: EB -A-IAA-1Y-SW -32

udaaea

'5. LiM1 75.0IaOW

Search BW : 3.00..

o IPFO
EDF
Non Interactive

0
Wartlet
m Clear

tight cmuna
Heavy Clouds
Fog
Bak,
Snow

Start E/S EIHP : 65.0 dBW

2nC Can- , Frey: 10.0 'NHz

EIRP
2nd CariIer Saturatbh
Screen Plot a Screen PrInt

neanle

Start Date: 14 Jun 91 TMIS:

Stop Date: 14 .&IN Hl Time:

Interval DaYisl:0

Figure 7. FLUX/EIRP Measurement User Interface Window

Some IOT measurements can be run automatically, without the presence of
an operator, while others are interactive and require operator inputs through-
out the measurement. Some measurements can be run in either mode (selectable
by the user as the "Non Interactive" option shown in Figure 7), which can be
toggled on or off by clicking the mouse.

Implementation of an effective user interface requires careful thought and
considerable effort. All MUI6 and other windows are implemented using Open
Software Foundation's OSF/Motif toolkit and style guidelines [7]. MUIS are
implemented to be consistent in behavior and similar in appearance. Buttons
and controls that perform the same function from one MUI to another are
positioned in the same location, so that the user who has learned one Mul has a
familiar model to follow. When opened, Muls are displayed with default
parameter values and control settings, and have a `form-fill-in"/menu-selection
presentation format. The default values are read from an ASCII file, which is

easily modified. If an input is invalid (e.g.. an out-of-range value is typed in),
the user is immediately notified of the error and prompted for another input.

Often, several input parameters are coupled in a dependency relationship to
preserve maximum operational flexibility. If a user specifies a parameter that
is coupled to others, the related parameter or parameters will also be changed
automatically. For example, the user may be required to specify a bandwidth,
a step size, and the number of steps to be performed by a measurement. These
parameters may be coupled such that specifying the number of steps and step
size automatically determines the bandwidth parameter as their product.

MU1-measurement process interface

Once the user has configured the measurement via the MCI, the specified
parameters and controls are communicated to the measurement process via a
command-line interface similar to the standard UNIX system command interface.
In normal operation, the user initiates a particular measurement by filling in
the appropriate MUI and scheduling the measurement. The MUI is displayed on
a workstation or X-Terminal. The user then presses the OK button on the MUi
(see Figure 7), and the MUI communicates this information to the measurement
process via the scheduler. At the scheduled time, the scheduler checks to see if
the required resources are available, starts the measurement process, establishes
a mail connection to the process, and allocates the requested resources.

To preserve maximum system flexibility, measurement programs can be
run without an MUI workstation or X-Terminal by using a standard character-
based ASCII terminal. A user can run an JOT measurement at the host earth
station from a remote site, such as the user's home, by using a personal or
portable computer and modem. For example, during an anomaly investigation,
it may be desirable to alter the normal flow of system operation or to make a
particular series of measurements not implemented by the IOT system mull.
This flexibility is achieved as described below.

Following UNIX conventions, an IOT measurement program can be invoked
from a connected terminal by typing the name of the executable program and
optional arguments as follows:

meas_name [-opt <opt_arg> ...]

where meas_name is the name of the measurement program, -opt specifies
an option, and <opt_arg> specifies an argument to an option. For example,
the command line to invoke the IPFD/EIRP measurement with options set for a
3-MHz search bandwidth and saturation is

flux_eirp -Search_bw 3.0 -Saturation

124 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

The IPFD/EIRP measurement program is invoked and instructed to set the
search bandwidth on the spectrum analyzer to 3.0 MHz and perform the
measurement at saturation. The arguments available to each IOT measurement
are customized for that particular measurement. Any control available in the
MUI can be entered as a command-line argument.

A measurement typically requires numerous controls and parameter settings.
Normally, the MIDI handles all controls: however, the number of controls can
present a problem for manual entry via a command line. Since the command is
transitory, whenever a measurement is repeated (perhaps with different options),
the measurement command and its arguments must be reentered-a tedious
and error-prone process. One solution is to place measurement arguments into
an arguments file. Once constructed, this file is permanent. regardless of the
options stored. The argsfile can be configured with a set of default options.

To accommodate the use of the argsfile, the measurement program extends
the conventional UNIX command-line invocation with one additional argument
-args <argsfile>. The -args option instructs the measurement process to
obtain its command-line arguments from the file named in the parameter.
<argsfile>. If an argsfile has been created for the IPFD/EIRP measurement. the
measurement program can be invoked from the UNIX command line as follows:

flux_eirp -args my_args

where the file my_args contains the arguments -Search bw 3.0 and
-Saturation. Once again, a data-driven design approach is used to preserve
maximum operational flexibility and adaptability.

The ability of the measurement program to receive its arguments from an
argsfile provides the necessary interface between the MUI and the measurement
program. When the MUI window (e.g., Figure 7) is opened, the parameters are
displayed with default settings which the user is free to alter to accommodate
a specific measurement configuration. When the measurement specification is
complete, the user presses OK. The Mui program then creates an argsfile
containing the specified arguments and parameters for use by the measurement
process (as depicted in Figure 6). Use of the argsfile minimizes the number of
entries required from the user, since most of the defaults are unchanged.

Measurement program implementation

The measurement program focuses on the measurement task itself. For
example, although the measurement process (a program in execution) outputs
a data file of results, it is not responsible for storing, displaying, printing, or
plotting the data. These tasks are managed by other processes. Similarly, the
measurement program is decoupled from the particular spacecraft upon which

MICROWAVE MEASI)RLMENT SYSTLM SOFTWARE 125

it will perform the measurement, and spacecraft information is communicated
from the Mui program via the argsfile.

Measurement programs are implemented in a modular manner using object-
oriented design and implementation techniques [9]. This results in a high
degree of encapsulation. Using the class terminology of object-oriented
programming, a generic "Measurement" class is implemented with attributes
(such as data declarations, data structures, and methods) that are common to
all IOT measurements. Measurement-class methods include performing
initialization and establishing a mail session with the scheduler, opening files,
checking arguments passed via the argsfile for validity, configuring uplink
and downlink equipment, performing up- and downlink measurements, storing
the final output data, pausing the measurement, and cancelling the measurement
when requested by the user. Since these common tasks comprise the bulk of
the measurement, it is appropriate to aggregate them into a generic class.

Measurement programs are coded in C++, a language designed to support
object-oriented programming and the construction of classes of objects with
inheritance relationships. Figure 8 illustrates the class structuring and inheri-
tance relationships of some of the IOT measurements. The implementation
of measurement programs as classes of objects allows the developer to
"leverage" code using inheritance, as explained below. This enhances relia-
bility because each software element is tested thoroughly every time it is
leveraged and reused. As a result, greater emphasis can be placed on measure-
ment technique, rather than measurement mechanics.

Inheritance enables the measurement developer to leverage code as follows.
Using the inheritance properties of C++ 1101, an EIRP measurement is
implemented as a subclass (or derived class) of the generic Measurement
class. The EIRP measurement inherits all of the data structures and methods of
the "parent" Measurement class, and implements additional structures and
methods as well.

The gain transfer, in-band frequency response, and spurious output
measurements are subclasses derived from the EIRP class. Gain transfer is an
EIRP measurement performed at different uplink power levels of a test signal;
frequency response is an EIRP measurement performed at different frequencies
in a spacecraft transponder channel; and spurious output is an EIRP measurement
performed on a specific spurious signal received from the communications
satellite. These measurements inherit the data structures and methods from the
parent EIRP class, as well as from the "grandparent" Measurement class, with
additional structures and methods implemented to accommodate measurement-
specific requirements. Thus, the developer of the gain transfer measurement
can focus on issues unique to that particular measurement, while reusing or

124 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

The IPFD/EIRP measurement program is invoked and instructed to set the
search bandwidth on the spectrum analyzer to 3.0 MHz and perform the
measurement at saturation. The arguments available to each IOT measurement
are customized for that particular measurement. Any control available in the
MUI can be entered as a command-line argument.

A measurement typically requires numerous controls and parameter settings.
Normally, the MIDI handles all controls: however, the number of controls can
present a problem for manual entry via a command line. Since the command is
transitory, whenever a measurement is repeated (perhaps with different options),
the measurement command and its arguments must be reentered-a tedious
and error-prone process. One solution is to place measurement arguments into
an arguments file. Once constructed, this file is permanent. regardless of the
options stored. The argsfile can be configured with a set of default options.

To accommodate the use of the argsfile, the measurement program extends
the conventional UNIX command-line invocation with one additional argument
-args <argsfile>. The -args option instructs the measurement process to
obtain its command-line arguments from the file named in the parameter.
<argsfile>. If an argsfile has been created for the IPFD/EIRP measurement. the
measurement program can be invoked from the UNIX command line as follows:

flux_eirp -args my_args

where the file my_args contains the arguments -Search bw 3.0 and
-Saturation. Once again, a data-driven design approach is used to preserve
maximum operational flexibility and adaptability.

The ability of the measurement program to receive its arguments from an
argsfile provides the necessary interface between the MUI and the measurement
program. When the MUI window (e.g., Figure 7) is opened, the parameters are
displayed with default settings which the user is free to alter to accommodate
a specific measurement configuration. When the measurement specification is
complete, the user presses OK. The Mui program then creates an argsfile
containing the specified arguments and parameters for use by the measurement
process (as depicted in Figure 6). Use of the argsfile minimizes the number of
entries required from the user, since most of the defaults are unchanged.

Measurement program implementation

The measurement program focuses on the measurement task itself. For
example, although the measurement process (a program in execution) outputs
a data file of results, it is not responsible for storing, displaying, printing, or
plotting the data. These tasks are managed by other processes. Similarly, the
measurement program is decoupled from the particular spacecraft upon which

MICROWAVE MEASI)RLMENT SYSTLM SOFTWARE 125

it will perform the measurement, and spacecraft information is communicated
from the Mui program via the argsfile.

Measurement programs are implemented in a modular manner using object-
oriented design and implementation techniques [9]. This results in a high
degree of encapsulation. Using the class terminology of object-oriented
programming, a generic "Measurement" class is implemented with attributes
(such as data declarations, data structures, and methods) that are common to
all IOT measurements. Measurement-class methods include performing
initialization and establishing a mail session with the scheduler, opening files,
checking arguments passed via the argsfile for validity, configuring uplink
and downlink equipment, performing up- and downlink measurements, storing
the final output data, pausing the measurement, and cancelling the measurement
when requested by the user. Since these common tasks comprise the bulk of
the measurement, it is appropriate to aggregate them into a generic class.

Measurement programs are coded in C++, a language designed to support
object-oriented programming and the construction of classes of objects with
inheritance relationships. Figure 8 illustrates the class structuring and inheri-
tance relationships of some of the IOT measurements. The implementation
of measurement programs as classes of objects allows the developer to
"leverage" code using inheritance, as explained below. This enhances relia-
bility because each software element is tested thoroughly every time it is
leveraged and reused. As a result, greater emphasis can be placed on measure-
ment technique, rather than measurement mechanics.

Inheritance enables the measurement developer to leverage code as follows.
Using the inheritance properties of C++ 1101, an EIRP measurement is
implemented as a subclass (or derived class) of the generic Measurement
class. The EIRP measurement inherits all of the data structures and methods of
the "parent" Measurement class, and implements additional structures and
methods as well.

The gain transfer, in-band frequency response, and spurious output
measurements are subclasses derived from the EIRP class. Gain transfer is an
EIRP measurement performed at different uplink power levels of a test signal;
frequency response is an EIRP measurement performed at different frequencies
in a spacecraft transponder channel; and spurious output is an EIRP measurement
performed on a specific spurious signal received from the communications
satellite. These measurements inherit the data structures and methods from the
parent EIRP class, as well as from the "grandparent" Measurement class, with
additional structures and methods implemented to accommodate measurement-
specific requirements. Thus, the developer of the gain transfer measurement
can focus on issues unique to that particular measurement, while reusing or

126 COMSAT TECIINICAI. REVIEW VOLUME 23 NUMBER 1,SPRING 1993 a MICROWAVE MEASUREMENT SYSTEM SOFTWARE 127

IN-BAND FREQUENCY RESPONSE PROGRAM

APPLICATIONS
SOFTWARE

CLASS MEASUREMENT LIBRARY

MEASUREMENT SUPPORT LIBRARY

MPCP
SOFTWARE

488 LIBRARY

UNIX O/S
SOFTWARE

SUBCLASS EIRP LIBRARY

INSTRUMENT LIBRARY

DEVICE I/O LIBRARY

KERNEL

SUBCLASS:

GAIN

/ SUBCLASS: \ 7 SUBCLASS:

IN-BAND SPURIOUS

HARDWARE

HARDWARE INTERFACE
(e.g., IEEE-488 ,RS232)

1 TRANSFER

Figure 8. JOT Measuremem Class Structure

"leveraging" the previously tested code for the EIRE and Measurement classes
from which it is derived. This repeated testing improves overall software
reliability.

Class-structured, object-oriented implementation of measurement procedures
enhances code flexibility and adaptability. For example, the gain transfer
measurement program can be modified without affecting other measurement
programs, such as in-band frequency response. On the other hand, global
changes can be made by modifying and recompiling the generic Measurement
class. Its derived classes inherit the modifications upon recompilation.

An IOT measurement is constructed as a hierarchy of modularized code
layers. The main program is linked with various libraries to create the executable
program. These libraries include application-level libraries (e.g., Measure-
ment and EIRP class libraries); MPCP libraries (e.g., measurement support,
instrument drivers, IEEE-488 bus management, mathematical, and utility func-
tions, and error management); and UNIX system libraries (e.g., device input/
output). The typical layered code organization of the in-band frequency re-
sponse measurement program is illustrated in Figure 9.

\ RESPONSE / \ OUTPUT /

MEASUREMENT HARDWARE & TEST EQUIPMENT

Figure 9. Layered Measurement Program Code

The main program makes a sequence of calls to functions in the EIRP and
Measurement class libraries. These, in turn , call functions in the MPCP
measurement support library, which perform tasks required by all measure-
ments, such as initializing hardware, creating and opening files required
by the measurement program, and performing housekeeping and cleanup
activities.

Instruments are accessed by measurement support library functions via
drivers in an instrument library. Instrument drivers perform high-level
operations such as initializing the instrument, changing its settings, and reading
the measured results. Each driver contains functions for its particular instrument.
Drivers have been implemented for:

• Spectrum analyzers
• RF and waveform synthesizers
• Network analyzers
• Modulation analyzers
• Noise analyzers

126 COMSAT TECIINICAI. REVIEW VOLUME 23 NUMBER 1,SPRING 1993 a MICROWAVE MEASUREMENT SYSTEM SOFTWARE 127

IN-BAND FREQUENCY RESPONSE PROGRAM

APPLICATIONS
SOFTWARE

CLASS MEASUREMENT LIBRARY

MEASUREMENT SUPPORT LIBRARY

MPCP
SOFTWARE

488 LIBRARY

UNIX O/S
SOFTWARE

SUBCLASS EIRP LIBRARY

INSTRUMENT LIBRARY

DEVICE I/O LIBRARY

KERNEL

SUBCLASS:

GAIN

/ SUBCLASS: \ 7 SUBCLASS:

IN-BAND SPURIOUS

HARDWARE

HARDWARE INTERFACE
(e.g., IEEE-488 ,RS232)

1 TRANSFER

Figure 8. JOT Measuremem Class Structure

"leveraging" the previously tested code for the EIRE and Measurement classes
from which it is derived. This repeated testing improves overall software
reliability.

Class-structured, object-oriented implementation of measurement procedures
enhances code flexibility and adaptability. For example, the gain transfer
measurement program can be modified without affecting other measurement
programs, such as in-band frequency response. On the other hand, global
changes can be made by modifying and recompiling the generic Measurement
class. Its derived classes inherit the modifications upon recompilation.

An IOT measurement is constructed as a hierarchy of modularized code
layers. The main program is linked with various libraries to create the executable
program. These libraries include application-level libraries (e.g., Measure-
ment and EIRP class libraries); MPCP libraries (e.g., measurement support,
instrument drivers, IEEE-488 bus management, mathematical, and utility func-
tions, and error management); and UNIX system libraries (e.g., device input/
output). The typical layered code organization of the in-band frequency re-
sponse measurement program is illustrated in Figure 9.

\ RESPONSE / \ OUTPUT /

MEASUREMENT HARDWARE & TEST EQUIPMENT

Figure 9. Layered Measurement Program Code

The main program makes a sequence of calls to functions in the EIRP and
Measurement class libraries. These, in turn , call functions in the MPCP
measurement support library, which perform tasks required by all measure-
ments, such as initializing hardware, creating and opening files required
by the measurement program, and performing housekeeping and cleanup
activities.

Instruments are accessed by measurement support library functions via
drivers in an instrument library. Instrument drivers perform high-level
operations such as initializing the instrument, changing its settings, and reading
the measured results. Each driver contains functions for its particular instrument.
Drivers have been implemented for:

• Spectrum analyzers
• RF and waveform synthesizers
• Network analyzers
• Modulation analyzers
• Noise analyzers

128 COMSAT IF(HXICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

• Frequency counters
• Power meters
• Voltmeters
• RF switch controllers
• Data acquisition units.
The driver provides a simple interface with the software developer using

the instrument. Because data integrity is a principal concern, the driver is
capable of detecting and reporting errors that may arise from interactions with
the instrument, and handles the instrument's software control capabilities.
This enables the developer to focus on instrument usage, rather than on the
detailed mechanics of communicating with the instrument.

Instrument drivers communicate with instruments via the IEEE-488 bus by
using the MPCP 488 library, which provides high-level bus management function
calls to the driver. The library performs atomic i/o with a given instrument, so
that an i/o transaction. once started, cannot be interrupted. This allows the
same instrument to be shared by multiple processes.

The 488 library also performs such functions as sending an Interface Clear
signal to all instruments, writing a command string to an instrument, reading a
response string from an instrument, addressing an instrument to talk or listen,
retrieving the bus and address of an instrument when multiple buses are
present, and performing a serial poll of an instrument to obtain its status byte.
These functions are generally called by the instrument drivers, but can also be
called by other programs for communication with other IEEE-488-compatible
devices such as computers or special-purpose hardware. The 488 library frees
its user from bus management details.

Functions in the 488 library call low-level, primitive functions supplied
with the UNIX operating system device VO library. These primitives interact
with the UNIX kernel (which directly controls the IEEE-488 bus) through an
interface card. A cable connects the workstation's interface card with the
instruments, which are daisy-chained onto the IEEE-488 bus through cables.

An instrument may he used in the shared mode in which it is checked out
from the scheduler, or may he managed completely by a device process. In the
shared mode, the instrument (if available) is checked out from the scheduler
as described previously. The measurement is not allowed to run if any of the
required instrumentation or other resources are unavailable. In the second
case, the instrument is fully managed by a device process. All requests are
issued to the instrument in the form of messages to the device process. which
then communicates with the particular device or instrument. The device is not
always a measurement instrument, but may be another computer that controls
and communicates with such earth station equipment as the uplink power

ICROW AVE MEASUREMENT SYSTEM SOL IWARL' 129

meter, radiometer, or antenna control unit. In general, the shared mode is
employed for instruments that are used occasionally by some measurements,
while the device process is employed for instruments used by all measurements
(e.g., to communicate with a separate earth station control computer).

Other MPCP libraries, including utility libraries, a mathematics library, and
the error handling library, are also linked to the measurement program. Several
utility libraries provide useful functions required by IoT measurements or by
other libraries, such as calculating EIRP, flux density, path loss, spacecraft
gain, spreading factor, and slant range. The math library contains numerous
mathematical functions routinely required in or and other measurement
systems, such as numerical integration and linear regression analysis. The
error handling library, which is used universally by all components of the
software system, is described below.

Measurement programs execute as processes to perform actual
measurements. In object-oriented terminology, a measurement process is an
"instantiation" of the measurement; that is, it is an instance of a measurement
program executing with parameters specified by the user.

A measurement process accesses several files, as illustrated in Figure 6.
When the user specifies and schedules a measurement in an MUI window, the
MUI process creates an argsfile and a stubfile. The stubfile contains annotations
for the specific measurement (e.g., the spacecraft selected, earth station name,
weather conditions, comments, and the date and time) which do not affect the
measurement itself. The measurement process obtains arguments from the
argsfile and opens the stubfile, to which it appends measurement data. The
process reads the resource file for the resources it requires, and the earth
station calibration file for earth station antenna and coupler calibration data.
The process may also access a parameters file for measurement-specific
parameters.

Also, during measurement execution, the measurement process configures
and controls the microwave measurement equipment for data acquisition, and
communicates with the scheduler. It interacts with the earth station daemon
process to obtain relevant information, and issues dialog windows to the user
via a dialog manager process. Real-time measurement data are displayed on
the workstation monitor as the measurement progresses (as depicted in
Figure 6), along with the status of the measurement. The final measurement
data file is stored in the database, printed, and plotted.

Error subsystem design

Error detection and management are critical considerations in the design
and implementation of a computer-controlled IOT system or similar

128 COMSAT IF(HXICAL REVIEW VOLUME 23 NUMBER I. SPRING 1993

• Frequency counters
• Power meters
• Voltmeters
• RF switch controllers
• Data acquisition units.
The driver provides a simple interface with the software developer using

the instrument. Because data integrity is a principal concern, the driver is
capable of detecting and reporting errors that may arise from interactions with
the instrument, and handles the instrument's software control capabilities.
This enables the developer to focus on instrument usage, rather than on the
detailed mechanics of communicating with the instrument.

Instrument drivers communicate with instruments via the IEEE-488 bus by
using the MPCP 488 library, which provides high-level bus management function
calls to the driver. The library performs atomic i/o with a given instrument, so
that an i/o transaction. once started, cannot be interrupted. This allows the
same instrument to be shared by multiple processes.

The 488 library also performs such functions as sending an Interface Clear
signal to all instruments, writing a command string to an instrument, reading a
response string from an instrument, addressing an instrument to talk or listen,
retrieving the bus and address of an instrument when multiple buses are
present, and performing a serial poll of an instrument to obtain its status byte.
These functions are generally called by the instrument drivers, but can also be
called by other programs for communication with other IEEE-488-compatible
devices such as computers or special-purpose hardware. The 488 library frees
its user from bus management details.

Functions in the 488 library call low-level, primitive functions supplied
with the UNIX operating system device VO library. These primitives interact
with the UNIX kernel (which directly controls the IEEE-488 bus) through an
interface card. A cable connects the workstation's interface card with the
instruments, which are daisy-chained onto the IEEE-488 bus through cables.

An instrument may he used in the shared mode in which it is checked out
from the scheduler, or may he managed completely by a device process. In the
shared mode, the instrument (if available) is checked out from the scheduler
as described previously. The measurement is not allowed to run if any of the
required instrumentation or other resources are unavailable. In the second
case, the instrument is fully managed by a device process. All requests are
issued to the instrument in the form of messages to the device process. which
then communicates with the particular device or instrument. The device is not
always a measurement instrument, but may be another computer that controls
and communicates with such earth station equipment as the uplink power

ICROW AVE MEASUREMENT SYSTEM SOL IWARL' 129

meter, radiometer, or antenna control unit. In general, the shared mode is
employed for instruments that are used occasionally by some measurements,
while the device process is employed for instruments used by all measurements
(e.g., to communicate with a separate earth station control computer).

Other MPCP libraries, including utility libraries, a mathematics library, and
the error handling library, are also linked to the measurement program. Several
utility libraries provide useful functions required by IoT measurements or by
other libraries, such as calculating EIRP, flux density, path loss, spacecraft
gain, spreading factor, and slant range. The math library contains numerous
mathematical functions routinely required in or and other measurement
systems, such as numerical integration and linear regression analysis. The
error handling library, which is used universally by all components of the
software system, is described below.

Measurement programs execute as processes to perform actual
measurements. In object-oriented terminology, a measurement process is an
"instantiation" of the measurement; that is, it is an instance of a measurement
program executing with parameters specified by the user.

A measurement process accesses several files, as illustrated in Figure 6.
When the user specifies and schedules a measurement in an MUI window, the
MUI process creates an argsfile and a stubfile. The stubfile contains annotations
for the specific measurement (e.g., the spacecraft selected, earth station name,
weather conditions, comments, and the date and time) which do not affect the
measurement itself. The measurement process obtains arguments from the
argsfile and opens the stubfile, to which it appends measurement data. The
process reads the resource file for the resources it requires, and the earth
station calibration file for earth station antenna and coupler calibration data.
The process may also access a parameters file for measurement-specific
parameters.

Also, during measurement execution, the measurement process configures
and controls the microwave measurement equipment for data acquisition, and
communicates with the scheduler. It interacts with the earth station daemon
process to obtain relevant information, and issues dialog windows to the user
via a dialog manager process. Real-time measurement data are displayed on
the workstation monitor as the measurement progresses (as depicted in
Figure 6), along with the status of the measurement. The final measurement
data file is stored in the database, printed, and plotted.

Error subsystem design

Error detection and management are critical considerations in the design
and implementation of a computer-controlled IOT system or similar

130 COMSAT'[ECHNICAI, REVIEW VOLUME 23 NUMBER I. SPRING 1993

measurement-oriented system. The MMS software is implemented to detect as
many errors as possible, in order to prevent data corruption.

Two broad categories of errors can be manifested. Operational errors occur
when the measurement process detects some condition or circumstance coded
in the program to be an error. For example, an operational error occurs when
an instrument required by a measurement cannot be initialized because it is
powered-off or disconnected from the computer, or a printer is off-line or out
of paper. If an operational error cannot be corrected, the measurement process
must be aborted. Other errors are manifested as programming errors. It is
important to detect both types of errors in a timely fashion and to obtain as
much information as possible concerning the circumstances that gave rise to
the error, to assist in diagnosis and correction.

The MPCP error library contains functions for assembling logging, and
displaying error messages. When an error is detected, the specific function
name and line number at which the error occurred are recorded.

Each layer of code is implemented to detect and report errors occurring at
that level. Because of the layered software architecture, error reporting is
stacked into a composite error message, as shown in Figure 10. When an error
is detected, an lOT measurement program at the highest code level [e.g., fl OI
places a message into a stack. Each lower layer of code [f2(), f3(), and f4()i
then places its own message onto the stack, so that the composite error
message depicts the full path from the application program, down through
successive layers, to the lowest-level function [t'4()OI in which the error was
detected. Figure I1 depicts a sample of a composite error message. The
complete error diagnostic, showing the full path through the various layers of
code, provides a context and clues for those tasked with troubleshooting and
correcting the error. Error files can be printed in hardcopy form for later
examination and analysis.

Measurement output files and data processing subsystems

If an IOT measurement process executes successfully to completion, it
produces a measurement data file. These files are formatted as standard COSDAF
files, and. because they are ASCII-encoded, can be viewed, edited, and im-
ported into other applications, such as word processing or graphics software.
Once data files have been produced, they can be processed by other MPCP
subsystems for database entry, printing, and plotting. Permanent measurement
data files are stored in a database.

The MPCP Database Management subsystem stores, searches, and retrieves
files for display, printing, and plotting, as depicted in Figure 6. The subsystem

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 131

ERROR STACK

BOTTOM

Figure 10. Error-Reporting Stack Mechanism

Mon May 17 14:11:34 1993 /proj/eutel/bin/flxerp

flxerp measurement cannot measure flux/eirp for channel 4.

meas_init_hdwro: Unable to initialize hardware.

ms_init_hdwro: hp3488a_new failed.

_hp3488a_inito: ZZ401 switch unit - slot #1 unavailable.

_hp3488a_getsloto: ZZ401 switch unit - cannot communicate with switch control unit.

_hpib_io_dcderro: HP-lB timeout, receive data ZZ401 9 /dev/hpib/l.

System call hpib_ioo: Connection timed out (errno is 238).

Try Again Cancel

Figure I I. Composite Error Message Format

130 COMSAT'[ECHNICAI, REVIEW VOLUME 23 NUMBER I. SPRING 1993

measurement-oriented system. The MMS software is implemented to detect as
many errors as possible, in order to prevent data corruption.

Two broad categories of errors can be manifested. Operational errors occur
when the measurement process detects some condition or circumstance coded
in the program to be an error. For example, an operational error occurs when
an instrument required by a measurement cannot be initialized because it is
powered-off or disconnected from the computer, or a printer is off-line or out
of paper. If an operational error cannot be corrected, the measurement process
must be aborted. Other errors are manifested as programming errors. It is
important to detect both types of errors in a timely fashion and to obtain as
much information as possible concerning the circumstances that gave rise to
the error, to assist in diagnosis and correction.

The MPCP error library contains functions for assembling logging, and
displaying error messages. When an error is detected, the specific function
name and line number at which the error occurred are recorded.

Each layer of code is implemented to detect and report errors occurring at
that level. Because of the layered software architecture, error reporting is
stacked into a composite error message, as shown in Figure 10. When an error
is detected, an lOT measurement program at the highest code level [e.g., fl OI
places a message into a stack. Each lower layer of code [f2(), f3(), and f4()i
then places its own message onto the stack, so that the composite error
message depicts the full path from the application program, down through
successive layers, to the lowest-level function [t'4()OI in which the error was
detected. Figure I1 depicts a sample of a composite error message. The
complete error diagnostic, showing the full path through the various layers of
code, provides a context and clues for those tasked with troubleshooting and
correcting the error. Error files can be printed in hardcopy form for later
examination and analysis.

Measurement output files and data processing subsystems

If an IOT measurement process executes successfully to completion, it
produces a measurement data file. These files are formatted as standard COSDAF
files, and. because they are ASCII-encoded, can be viewed, edited, and im-
ported into other applications, such as word processing or graphics software.
Once data files have been produced, they can be processed by other MPCP
subsystems for database entry, printing, and plotting. Permanent measurement
data files are stored in a database.

The MPCP Database Management subsystem stores, searches, and retrieves
files for display, printing, and plotting, as depicted in Figure 6. The subsystem

MICROWAVE MEASUREMENT SYSTEM SOFTWARE 131

ERROR STACK

BOTTOM

Figure 10. Error-Reporting Stack Mechanism

Mon May 17 14:11:34 1993 /proj/eutel/bin/flxerp

flxerp measurement cannot measure flux/eirp for channel 4.

meas_init_hdwro: Unable to initialize hardware.

ms_init_hdwro: hp3488a_new failed.

_hp3488a_inito: ZZ401 switch unit - slot #1 unavailable.

_hp3488a_getsloto: ZZ401 switch unit - cannot communicate with switch control unit.

_hpib_io_dcderro: HP-lB timeout, receive data ZZ401 9 /dev/hpib/l.

System call hpib_ioo: Connection timed out (errno is 238).

Try Again Cancel

Figure I I. Composite Error Message Format

132 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993 S MICROWAVE ME:ASUREMENr SYSTEM SOFTWARE 133

consists of a formal database containing a summary of the information associ-
ated with every measurement that has been stored (called the "index"), and a
set of separate measurement data files containing the raw and processed
results from each measurement (called "files"). The index is used to quickly
locate data files of interest, just as a card catalog is used in a library. Once a
particular data file has been located, it may be plotted, printed, or post-
processed in some fashion.

The MPCP Plotting Services subsystem plots measurement data both dur-
ing and after the measurement. The subsystem supports measurement systems
in which many different types of data plots, to either soft output (e.g., CRT
displays) or hardcopy devices, are necessary for real-time measurements and
post-measurement data analysis, as depicted in Figure 6. Plot formatting is
specified by a style file that can easily be edited to change the appearance of
the plot, without changing either the measurement data or the plotting pro-
gram. Figure 12 illustrates specifications that can be accommodated in the
plot style file.

The MPCP Printing Services subsystem prints measurement data, supports
systems output, and formats data in much the same way as the plotting
subsystem. Printouts are generated automatically at the conclusion of a
measurement process, or at user request.

The MPCP Interactive Plotting subsystem significantly extends the post-
measurement data analysis and manipulation capability of the measure-
ment system beyond that supplied by MPCP Plotting Services, and provides a
general-pupose capability to prepare finished, report-quality plots and graphs.
It can plot any pair of columns of data in a COSDAF file. This is significant
because, although the measurement data file contains a table with many columns
of data, the MPCP Plotting Services subsystem normally plots only two columns
(or three columns: Yl and Y2 vs X). The Interactive Plotting subsystem also
supports graphs with two Y axes (Yl and Y2 is X). The data on a plot can be
manipulated and edited in the following ways:

• Points can be cut and pasted.

• Scales, axes, and labels can be changed.
• Graphs or points can be annotated and/or marked.

• The plot can be zoomed in or out.
• New data points can be added via the keyboard and/or from existing

files.
• Data from one or more files can be plotted on the same graph as data

from another file.

LEGEND --.- DATE
TIME :
COMMENTS'.

CONSTANTS y

MARKER
LABEL

RX TEMP = 35'C
7 --

FORM _;

FORM
FIELD

TITLE

NOTE: THIS IS NOT REAL DATA * LABEL

S/C VELOCITY=5 M5

B

TRACE
- TRACE I INFO

TRACE TRACE
LABEL

GRID

AXIS

I 2 3 4 5 6 >t- TICK LABEL
NAME [UNITS]

S/C'. F2

IOT MEASUREMENT

EIS: EAST CLARKSBURG J

Figure 12. MPCP Plotting Specifications

Various data transformations are also supported. Two or more traces can
be merged, algebraically added, or algebraically subtracted. For example, a
calibration file can be subtracted from a measurement file, or two measure-
ment traces can be subtracted from one another, leaving the residual differ-
ences. Finished plots can he stored and later retrieved.

Conclusions

The concept of building MMS software on an engineered platform of reus-
able facilities and services has been presented. Contemporary software engi-
neering principles and practices-such as design-for-reusability; modularity
and encapsulation of task-specific functions; object-oriented methodology and

132 COMSAT TECHNICAL REVIEW VOLUME 23 NUMBER I, SPRING 1993 S MICROWAVE ME:ASUREMENr SYSTEM SOFTWARE 133

consists of a formal database containing a summary of the information associ-
ated with every measurement that has been stored (called the "index"), and a
set of separate measurement data files containing the raw and processed
results from each measurement (called "files"). The index is used to quickly
locate data files of interest, just as a card catalog is used in a library. Once a
particular data file has been located, it may be plotted, printed, or post-
processed in some fashion.

The MPCP Plotting Services subsystem plots measurement data both dur-
ing and after the measurement. The subsystem supports measurement systems
in which many different types of data plots, to either soft output (e.g., CRT
displays) or hardcopy devices, are necessary for real-time measurements and
post-measurement data analysis, as depicted in Figure 6. Plot formatting is
specified by a style file that can easily be edited to change the appearance of
the plot, without changing either the measurement data or the plotting pro-
gram. Figure 12 illustrates specifications that can be accommodated in the
plot style file.

The MPCP Printing Services subsystem prints measurement data, supports
systems output, and formats data in much the same way as the plotting
subsystem. Printouts are generated automatically at the conclusion of a
measurement process, or at user request.

The MPCP Interactive Plotting subsystem significantly extends the post-
measurement data analysis and manipulation capability of the measure-
ment system beyond that supplied by MPCP Plotting Services, and provides a
general-pupose capability to prepare finished, report-quality plots and graphs.
It can plot any pair of columns of data in a COSDAF file. This is significant
because, although the measurement data file contains a table with many columns
of data, the MPCP Plotting Services subsystem normally plots only two columns
(or three columns: Yl and Y2 vs X). The Interactive Plotting subsystem also
supports graphs with two Y axes (Yl and Y2 is X). The data on a plot can be
manipulated and edited in the following ways:

• Points can be cut and pasted.

• Scales, axes, and labels can be changed.
• Graphs or points can be annotated and/or marked.

• The plot can be zoomed in or out.
• New data points can be added via the keyboard and/or from existing

files.
• Data from one or more files can be plotted on the same graph as data

from another file.

LEGEND --.- DATE
TIME :
COMMENTS'.

CONSTANTS y

MARKER
LABEL

RX TEMP = 35'C
7 --

FORM _;

FORM
FIELD

TITLE

NOTE: THIS IS NOT REAL DATA * LABEL

S/C VELOCITY=5 M5

B

TRACE
- TRACE I INFO

TRACE TRACE
LABEL

GRID

AXIS

I 2 3 4 5 6 >t- TICK LABEL
NAME [UNITS]

S/C'. F2

IOT MEASUREMENT

EIS: EAST CLARKSBURG J

Figure 12. MPCP Plotting Specifications

Various data transformations are also supported. Two or more traces can
be merged, algebraically added, or algebraically subtracted. For example, a
calibration file can be subtracted from a measurement file, or two measure-
ment traces can be subtracted from one another, leaving the residual differ-
ences. Finished plots can he stored and later retrieved.

Conclusions

The concept of building MMS software on an engineered platform of reus-
able facilities and services has been presented. Contemporary software engi-
neering principles and practices-such as design-for-reusability; modularity
and encapsulation of task-specific functions; object-oriented methodology and

134 COMSAT TECHNICAL REV IEW VOLUME 23 NUMBER 1. SPRING 1993

implementation; hierarchical layering of code; linkable object code libraries;
and processing subsystems-were used to develop and deploy robust, flex-
ible, adaptable MMS software.

The desire for code reusability directed development of the MPCP, a special-
purpose operating system that significantly reduces the time and expense
involved in developing and implementing a cost-effective MMS. The field-
tested MPCP software enables the limited number of expert software develop-
ers available to focus on the application's design and implementation, rather
than on the software infrastructure required to support modern TOT and other
microwave measurement and control systems.

Supported by the MPCP interprocess/intermachine mail communications
subsystem, scheduler, and datapool, the IOT measurement architecture physi-
cally and logically partitions the overall task into separate user interface and
measurement program entities, each optimized to perform a specific task. The
network system architecture enables the user interface program and
measurement program to execute on different machines and at different times
of day-providing the system with a high degree of operational flexibility,
including remote access and control of the IO'r measurement equipment.

The concepts and methods applied in this study to the complex task of
building automated IOT systems in a dynamic environment are also applicable
to similar measurement-oriented systems, such as those used for communica-
tions systems monitoring.

References

III

121

131

Y. Tharaud, B. Kasstan, and P. Barthmann, "IOT System for the EUTELSAT 11
Satellites," Global Satellite Communications Symposium, Nanjing, China, May
1991. Proc., pp. 168-177.
Y. Tharaud and V. Riginos, "EUTELSAT's Facilities for Measurement of Earth
Stations and In-Orbit Satellite Payloads," 23rd General Assembly of the
International Union of Radio Science (URSI), Prague, Czechoslovakia, August-
September 1990.
P-H. Shen, V. Riginos, and S. Bangara, "In-Orbit Testing of Communications
Satellites: The State of the Art," Global Satellite Communications Symposium,
Nanjing, China, May 1991, Prot, pp. 150-159.

141 K. D. Follett et al., "The EUTELSAT In-Orbit Test System," COMSAT Technical

[5]
Review, Vol. 23, No. 1, Spring 1993, pp. 61-99 (this issue).
V. Riginos et al., "In-Orbit Test and Monitoring Systems Architecture," AIAA
14th International Communications Satellite Systems Conference, Washington,
DC. March 1992. Prot, pp. 951-961.

MICROWAVE MEASUREMENTSYSIEM SOFTWARE 135

[6] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Hillsdale, NJ: Lawrence Erlhaum. 1983.

[71 OSF/Motif Style Guide, Rev. 1.1, Open Software Foundation, Englewood Cliffs,
NJ: Prentice-Hall, 1991.

181 Apple Human Interface Guidelines: The Apple Desktop Interface, Apple Com-
puter, Inc., Cupertino, CA, 1987.

[9] G. Beech, Object Oriented Design With Applications, Redwood City, CA:
Benjamin-Cummings, 1991.

1101 B. Stroustrup, The C++ Programming Language. Reading, MA: Addison-Wesley.
1986.

Kenneth D. Follett received a BSFE and MSEE from
the University of Illinois, Urbana-Champaign, in /979 and
1981, respectively. He joined COMSAT Laboratories in
1981 as a member of the Transponders Department of the
Microwave Technology Division and participated in all
aspects (including both microwave hardware and, onipuler
software system design) of rnanr /OT systems, including
those for INTELSA T, MCI, and EU'TELSA T. His work also
involved software development for COMPACT Software,
and lie was a project manager for the RF Terminal
Supervisory System of the NASA/ACTS earth station .

Mr. Fullett is currently engaged in high-energy physics research in the Anti-Proton
Source Department of the Accelerator Division oj' Fermi National Accelerator
Laboratory, Batavia, illnnois.

134 COMSAT TECHNICAL REV IEW VOLUME 23 NUMBER 1. SPRING 1993

implementation; hierarchical layering of code; linkable object code libraries;
and processing subsystems-were used to develop and deploy robust, flex-
ible, adaptable MMS software.

The desire for code reusability directed development of the MPCP, a special-
purpose operating system that significantly reduces the time and expense
involved in developing and implementing a cost-effective MMS. The field-
tested MPCP software enables the limited number of expert software develop-
ers available to focus on the application's design and implementation, rather
than on the software infrastructure required to support modern TOT and other
microwave measurement and control systems.

Supported by the MPCP interprocess/intermachine mail communications
subsystem, scheduler, and datapool, the IOT measurement architecture physi-
cally and logically partitions the overall task into separate user interface and
measurement program entities, each optimized to perform a specific task. The
network system architecture enables the user interface program and
measurement program to execute on different machines and at different times
of day-providing the system with a high degree of operational flexibility,
including remote access and control of the IO'r measurement equipment.

The concepts and methods applied in this study to the complex task of
building automated IOT systems in a dynamic environment are also applicable
to similar measurement-oriented systems, such as those used for communica-
tions systems monitoring.

References

III

121

131

Y. Tharaud, B. Kasstan, and P. Barthmann, "IOT System for the EUTELSAT 11
Satellites," Global Satellite Communications Symposium, Nanjing, China, May
1991. Proc., pp. 168-177.
Y. Tharaud and V. Riginos, "EUTELSAT's Facilities for Measurement of Earth
Stations and In-Orbit Satellite Payloads," 23rd General Assembly of the
International Union of Radio Science (URSI), Prague, Czechoslovakia, August-
September 1990.
P-H. Shen, V. Riginos, and S. Bangara, "In-Orbit Testing of Communications
Satellites: The State of the Art," Global Satellite Communications Symposium,
Nanjing, China, May 1991, Prot, pp. 150-159.

141 K. D. Follett et al., "The EUTELSAT In-Orbit Test System," COMSAT Technical

[5]
Review, Vol. 23, No. 1, Spring 1993, pp. 61-99 (this issue).
V. Riginos et al., "In-Orbit Test and Monitoring Systems Architecture," AIAA
14th International Communications Satellite Systems Conference, Washington,
DC. March 1992. Prot, pp. 951-961.

MICROWAVE MEASUREMENTSYSIEM SOFTWARE 135

[6] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Hillsdale, NJ: Lawrence Erlhaum. 1983.

[71 OSF/Motif Style Guide, Rev. 1.1, Open Software Foundation, Englewood Cliffs,
NJ: Prentice-Hall, 1991.

181 Apple Human Interface Guidelines: The Apple Desktop Interface, Apple Com-
puter, Inc., Cupertino, CA, 1987.

[9] G. Beech, Object Oriented Design With Applications, Redwood City, CA:
Benjamin-Cummings, 1991.

1101 B. Stroustrup, The C++ Programming Language. Reading, MA: Addison-Wesley.
1986.

Kenneth D. Follett received a BSFE and MSEE from
the University of Illinois, Urbana-Champaign, in /979 and
1981, respectively. He joined COMSAT Laboratories in
1981 as a member of the Transponders Department of the
Microwave Technology Division and participated in all
aspects (including both microwave hardware and, onipuler
software system design) of rnanr /OT systems, including
those for INTELSA T, MCI, and EU'TELSA T. His work also
involved software development for COMPACT Software,
and lie was a project manager for the RF Terminal
Supervisory System of the NASA/ACTS earth station .

Mr. Fullett is currently engaged in high-energy physics research in the Anti-Proton
Source Department of the Accelerator Division oj' Fermi National Accelerator
Laboratory, Batavia, illnnois.

136

Walter D. Kelley, Jr., earned a BS in electrical
engineering at the Catholic Univer-sitr of America,
Washington, D_C, in 1974; and an MBA at Mmymount
University, Arlington, VA, in 1983. In 1991, he joined the
Transponders Department of the Satellite and Systems
Technologies Division at COMSAT Laboratories as it Mem-
ber of the Technical Staff At COMSAT, he has participated
in development of the 107 system for Hughes Connnunica-
tions' DirecTv' an lOT system for EUTELSAT and the
NASA/ACTS ground station control and status subsstenr.

Vasilis E. Riginos received a BE, MEng. and PhD in
electrophysics from the Stevens Institute of Technology,
Hoboken, NJ, in 1964, 1970, and 1973, respectively. He is
currently Manager of the Transponders Department of the
Satellite and S:vstenns Technologies Division at COMSAT
Laboratories, where he is respottsihle for directing re sea, (it
and development on conmtunicuhons system performance
as applied to satellite transponders. He also supervises
research and development in advanced microwave circuits
.such as high-power amplifiers, regenerative receivers,
filters, and multiplexers. Dr. Rigin.c participated in the
evaluation of the Inmarsat program, and has been project managerfor the GTE ATEF
IOT system, the INTE'LSAT Maritime Conunumications Subsystem lOT station, the
EUTELSAT lOTsystem, and the Hughes DirecTv' IOT system. He is a member of

Sigma Xi, AAAS. IEEE, and the American Physical Society.

Pei-Hong Shen received a BS and MS in genetics, and
an MS in computer science, from Washington State
University in 1983, 1984, and 1986, respectively. From
/978 to 1981, she studied biology and genetics while
attending Fudan University in Shanghai. Peoples Republic
of China. Ms. Shen is currently a Senior Member of the
Technical Staff in the Transponders Department of the
Satellite and Systents Technologies Division at COMSAT
Laboratories, where she is primarily responsible for design
mid development of .software for communications satellite
applications. Since joining COMSAT in 1987, she has been

involved in the design and development of the billowing .systems: NASA/ACTS,
EUTELSAT IOT. mid Hughes ' DirecTVTs1 lOT She is a member of the IEEE Computer
Society.

COMSAT TECHNICAL REVIEW VOLUME. 23 NEMBER I, SPRING 199, MICROWAVE. MEASIJREMEN'C SYSTEM SOFTWARE 137

Steven L. Teller received an AS and AA from Harper
College in 1979; and a BA in information and computer
sciences from Hood College in 1991. He is currently a
Member of the Technical Staff in the 7tansponders
Department of the Satellite and Systems Technologies
Division at COMSAT Laboratories. Since joining COMSAT,
he has been involt ed in t a imts aspects of the JOT of
communications satellites, including the NASA/ACIS RF
terminal supervisor, and lOT for EUTELSAT, MCI,
INTELSAT GTE, and the Hughes DirecT,IM system, He
has been responsible for software vs mamtal measurement

verification during system development, in-plant testing, and on-site testing. He was
also involved in prototsping mid testing various new mea siltentent schemes, and was a
major contributor to final system installation testing.

136

Walter D. Kelley, Jr., earned a BS in electrical
engineering at the Catholic Univer-sitr of America,
Washington, D_C, in 1974; and an MBA at Mmymount
University, Arlington, VA, in 1983. In 1991, he joined the
Transponders Department of the Satellite and Systems
Technologies Division at COMSAT Laboratories as it Mem-
ber of the Technical Staff At COMSAT, he has participated
in development of the 107 system for Hughes Connnunica-
tions' DirecTv' an lOT system for EUTELSAT and the
NASA/ACTS ground station control and status subsstenr.

Vasilis E. Riginos received a BE, MEng. and PhD in
electrophysics from the Stevens Institute of Technology,
Hoboken, NJ, in 1964, 1970, and 1973, respectively. He is
currently Manager of the Transponders Department of the
Satellite and S:vstenns Technologies Division at COMSAT
Laboratories, where he is respottsihle for directing re sea, (it
and development on conmtunicuhons system performance
as applied to satellite transponders. He also supervises
research and development in advanced microwave circuits
.such as high-power amplifiers, regenerative receivers,
filters, and multiplexers. Dr. Rigin.c participated in the
evaluation of the Inmarsat program, and has been project managerfor the GTE ATEF
IOT system, the INTE'LSAT Maritime Conunumications Subsystem lOT station, the
EUTELSAT lOTsystem, and the Hughes DirecTv' IOT system. He is a member of

Sigma Xi, AAAS. IEEE, and the American Physical Society.

Pei-Hong Shen received a BS and MS in genetics, and
an MS in computer science, from Washington State
University in 1983, 1984, and 1986, respectively. From
/978 to 1981, she studied biology and genetics while
attending Fudan University in Shanghai. Peoples Republic
of China. Ms. Shen is currently a Senior Member of the
Technical Staff in the Transponders Department of the
Satellite and Systents Technologies Division at COMSAT
Laboratories, where she is primarily responsible for design
mid development of .software for communications satellite
applications. Since joining COMSAT in 1987, she has been

involved in the design and development of the billowing .systems: NASA/ACTS,
EUTELSAT IOT. mid Hughes ' DirecTVTs1 lOT She is a member of the IEEE Computer
Society.

COMSAT TECHNICAL REVIEW VOLUME. 23 NEMBER I, SPRING 199, MICROWAVE. MEASIJREMEN'C SYSTEM SOFTWARE 137

Steven L. Teller received an AS and AA from Harper
College in 1979; and a BA in information and computer
sciences from Hood College in 1991. He is currently a
Member of the Technical Staff in the 7tansponders
Department of the Satellite and Systems Technologies
Division at COMSAT Laboratories. Since joining COMSAT,
he has been involt ed in t a imts aspects of the JOT of
communications satellites, including the NASA/ACIS RF
terminal supervisor, and lOT for EUTELSAT, MCI,
INTELSAT GTE, and the Hughes DirecT,IM system, He
has been responsible for software vs mamtal measurement

verification during system development, in-plant testing, and on-site testing. He was
also involved in prototsping mid testing various new mea siltentent schemes, and was a
major contributor to final system installation testing.

